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ABSTRACT

Cylinder with a wedge and a coaxial shell with an axial slot make up the

antenna. A stationary expression for the admittance is obtained when the antenna

is enclosed by a plasma sheath. The basis of the admittance calculation is the

electric field of the wedge aperture derived from a solution of two coupled inte-

gral equations. The calculatioQs are carried out for the parameter ranges" The

radii of the cylinder and shell are, in wavelength, from 0.05/_r to 2/_r and from

0.055/_ to 2.2/_r_ respectively. The plasma sheath thickness is from 0 to

2.5/1r. The plasma frequency to signal frequency ratio, _0u/_0, is from 0 to 5.

Collision frequency to signal frequency ratio, v/_0, is 0; 0.01; 0. l s and 0.5. The

angular width of the wedge slot and the shell slot are the same and equal to 0.06

radians. The results indicate" For _u/w > 1, conductance and susceptance depend

weakly on the plasma sheath thickness. For _u/w > 1 and u/w = 0, conductance

decreases exponentially when either the sheath thickness or _/_ increases. Sus-

ceptance depends primarily on _u/w and inappreciably on the sheath thickness.

An increase of u/_0 increases the conductance but modifies the susceptance only

slightly. The coaxial slotted shell behaves as an ideal voltage transformer in

the equivalent antenna circuit.
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CHAPTER I

INTRODUCTION

i. Survey o£ P_ev-lous,,,^_i..,,,,,_,.

In the course of re-entry, a space vehicle travels through the upper

atmosphere with hypersonic speed, thus a highly ionized non-uniform plasma

layer is generated. This plasma layer encloses the body of the vehicle,

therefore ittends to block the radio contact between the vehicle and the out-

side stations. In the lastfew years, this problem has attracted the

attentionof a number of investigators.

Hodara (1963) calculated the radiation pattern of a sloton an infinitely

conducting plane covered with a homogeneous, but anisotropic plasma layer.

In his approach, he firstassumed a reasonable aperture fieldand then

obtained the far field. He did not consider the slot admittance. To obtain

the slotadmittance, one has toknow the fieldin the slot much more accurate-

ly than Is required for the far fieldcalculations. Galejs (1963) considered

a slot on an infinitelyconducting plane, backed by a rectangular cavity and

excited by a current generator. He formulated a stationary expression for

the slotadmittance. In his more recent papers (1964, 1965a, 1965b), he

applied the same technique to evaluate the slotadmittance when the conduct-

ing plane is covered with a homogeneous plasma layer. A.T. Villeneuve

(1965) considered a problem which involves a rectangular waveguide term-

inated on an infinitelyconducting plane coated with a plasma layer. He

employed the reaction concept to derive a stationary form for the terminal

admittance of the waveguide. Both Galejs and Villeneuve limited their

calculation to the case of signal frequency _ greater than plasma frequency

a)p.



Unless the aperture size and free space wavelength are much smaller

than the size of the vehicle, we could not use the plane geometry to approx-

imate the surface of the vehicle; otherwise a geometry closer to reality

should be considered. Some authors choose to consider the circular

cylindrical geometry. A typical geometrical configuration is shown in

Fig. i-i

Plasma Layer

FIG. I-i: CROSS-SECTION OF A TYPICAL SLOTTED CYLINDER

WITH A PLASMA SHEATH.

where the slot A may be either axial slot or circumferencial slot. The existing

work for the above configuration almost entirely is concerned with evaluating the

radiation pattern of the slot when the plasma layer is assumed to be of the

following:

(a)

(b)

(c)

homogeneous and isotropic (Knop 1961, Sengupta 1964)

homogeneous and anisotropic (Chen and Cheng, 1965)

isotropicbut inhomogeneous (Rusch 1964, Swift 1964, Taylor 1961)
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The last case is of particular interest to us. Rusch and Swift assumed that

the density of plasma varies continuously according to a specified function

of the radial variable r. Taylor (Rotman and Meltz, 1961) considered the

plasma sheath to be stepwise inhomogeneous. The inner step is very thin

and highly overdense in comparison with the wavelength. Therefore he

regarded this sublayer as metal-like sheet. This metal-like sheet is then

followed by a comparatively thick dielectric-like subiayer. Tu prevent a

short circuit on the antenna, a dielectric layer is placed between the metal

surface of the vehicle and the metal-like sublayer. He also pointed out that

the radio communication blackout is due to the metal-like sublayer.

Olte (1965) in a recent paper considered a conducting cylinder enclosed

by a slotted coaxial metal shell with an axial slot which represents the metal-

like plasma sheath. The electromagnetic field is excited by an axial magnetic

line source on the cylinder (Fig. 1-2). He calculated the power radiated

through the shell for different combinations of the cylinder size, shell size,

and the separation angle e between the line source A and the shell slot.

Perfectly C on- _ J __
ducting Shell ""__ _ \e

y/o
Perfectly Conducting "_/ _ J

Cylinder

FIG. 1-2: RELATIVE POSITION OF SHELL SLOT AND MAGNETIC

LINE SOURCE.
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2. Problem to be Investigated

Although the radiation problem of a slot on a cylinder with a plasma

sheath has been treated by many authors, few of them have been concerned

with the admittance. The prime purpose of this report is to partly fillthis

gap. The geometrical configuration we consider is shown below:

,,,'.o.\L' q .)/, 7

Perfectly conducting

cylinder with a wedge

FIG. 1-3: CROSS-SECTION OFA WEDGED CYLINDERm SLOTTED

SHELLe AND PLASMA SHEATH.

where A is a circular cylinder with a wedge of width 2 O0 o B is a dielectric

Z

with _r I, •r = I , c is a uniform dielectric-llkeplasma layer, D is the

free space region, E is a circular conducting shell with an axial slot, a, b,

and c are the radii of the cylinder, circular shell and the outer boundary of

the plasma layer respectively, 0 represents the center to center angle between

the shell slotand the wedge slot. Ifwe assume a magnetic line source at the

apex of the wedge, then the electromagnetic energy radiated from the line
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source is guided by the wedge to the coaxial region and then through the shell

slot and the plasma sheath to the free space. Therefore we may regard the

wedge as the antenna feeding line and we proceed to calculate the terminal

admittance of the wedge waveguide.

3. Outline of the Report

In the next chapter, we first assume the source strength to be V
o

volts and then write down the fields in the form of infinite series for the

wedge guide, the coaxial region, the plasma, and the free space. From the

continuity of the tangential electromagnetic fields in the two apertures, we

formulate two coupled integral equations with _-directed electric field in the

wedge aperture and shell slot as the unknown functions. From these

expressions we formulate the terminal admittance of the wedge waveguide

which is proved to be stationary with respect to the variations of the wedge

aperture field. In chapter III and chapter IV, we present the methods and

the solutions of the coupled integral equations. Upon employing these sol-

utions, we obtain in chapter V the explicit expressions for the voltages of

the two slots and the terminal admittance of the wedge waveguide when both

slots are narrow. Parallel to the stationary formulation of the terminal

admittance of the wedge waveguide, in chapter VI, we formulate this

admittance in an alternate form. This new formulation is not stationary,

but provides a basis for the discussion of the contribution of different regions

to the terminal admittance. From this formulation, we construct an equiva-

lent circuit. In chapter VII, we present the numerical values of the terminal

conductance and terminal susceptances computed from the expression of the

admittance obtained in chapter V. Finally, we draw some brief conclusions

for this report.

In order to maintain the main sequence of thought, we leave some of

the detailed derivations to the apendices A-1 through A-IO.



CHAPTER II

INTEGRAL EQUATIONS AND THE TERMINAL

ADMITTANCE OF THE WEDGE WAVEGUIDE

1. Introduction:

The geometrical configuration which we choose to consider suggests

us to employ the cylindrical coordinates, of which the z-axis is aligned with

the axis of the cylinder and _ is measured in a counter-clockwise direction

from the center of the slot of the shell. Because the antenna is excited by

an axial magnetic line source, only the following field components exist:

H axial magnetic field,
z

E_ circumferencial electric field,

E radial electric field.
r

By superscripts I, II, III and IV, we will denote the wedge waveguide,

the coaxial region, the plasma sheath, and the free space, respectively.

Since tangential electromagnetic field must be continuous across the wedge-

guide aperture, the shell slot, and the tangential electric field must vanish

on the perfectly conducting cylindrical walls one obtains at r = a :

E_:I E_-H._ (_) ,"0 - 00 < _ < 0 + 00 (2-1-1}

E_=0;II 0+00_<_..< (2_r+0-00) (2-1-2)

H I = HII
z z; 0-0 0 < _ < 0+0 0 , (2-1-3)
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atr:b:

--o; (2-1-5)

HII = Hm " -_0 < _ < _0 (2-1-6)
Z Z • •

atr=c:

HIII=H Iv • -_r..<_..< _ . (2-1-8)
Z Z •

In the last part of thischapter we use the forgoing relations to formulate two

coupled integral equations with the wedge guide aperture field _ (_) and the

shell slot fieldE (_) as the unknown functions.

One may consider the wedge guide as a transmission line with TEM

wave as the transmission mode. We consider a section of wedged-waveguide

of length L • in which the transmission line voltage and current are governed

by the following equations (Montgomery• 1948)

dV(r)dr = - j k0 Z0(r) I(r) (2-1-9)

dr = - j k0 Y0 (r) V0(r) (2-1-1o)

where

1 L
YO (r) = Z-_ = 20 Or

(2-1-11)



8

The positive directions for the current and voltage are shown in

Fig. 2-1

v(r)

FIG. 2-1: POSITIVE VOLTAGE AND CURRENT OF WEDGE

GUIDE

The solution of differential equations {2-1-9) and (2-1-10) are easily

obtained as

I(r) =- [A'H(_)(k0r)+ B'H(10 ) (k0r) 1

V(r) - jY0(r) n0 _K0 n0 (k0r

(2-1-12)

(2-i-13)

where the primes indicate the derivatives of the Hankel function.

defines the normalized admittance at a cross-section r as

If one

y(r) = I(r) 1
V--_ Y0(r)

(2-1-14)
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then from previous two equations one obtains

A_I(_) (k0r) , (1)+ B H 0 (k0r)

y(r) = J _;H' (2)'0(k0r) +B'H(10)'(k0 r)

(2-1-15)

The normalized terminal admittance of the wedge waveguide is y(a). Thus our

problem in to find the constants R and B'.

2. Field Expressions:

The field expressions (Stratton, 1941) in the wedge waveguide are

HI ,2[. '.(2)

z = K0_A0n 0 (k0r)

, (1)
+ B0H 0 (k0r) _ ' k0 n= 00)}

+ A J ( 1")coswx-_ (_-0+ ,
n=l n n_____ "°0

%
(2 -2-1)

EOI = jto_0k 0 . 0n'.(2)0 (k0r) + BoH'0 (k0r) + An J'n__..__r(k0r) cos (_-0 ,

2O0
(2 -2-2)

E1 JCOPO _ nTt A' n_
sin

- -- _ J (kor) 200 (_-e+o O) (2-2-3)r r n = 1200 n n_.._._

2%

If we let V (r) be the voltage between the walls of the wedge, then

+00 r I d_V(r) = - E_
(2-2-4)

TTnc_m o,,hc=+]1",IHn_ f_.--_.--_.) in /2-2-4). we obtain

[ ' .,]v(r) = - J_0k0r2e0 %"*"(2)'(k0r)0+ BoH( ) (k0 (2-2-5)
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! !

One may specify the value of Aft or Bff or their linear combination. We

choose to specify the voltage at the apex of wedge, i.e. to fix the strength

of the magnetic line source. Let

lira -jtoP0k0r200IAoH(20) (k0r)+ B0H O (k0r =V 0.
r-_O(

(2-2-6)

After taking the limit, the result is

, , _ V 0

A 0-B 0 =- 400_P0
(2 -2 -7)

In the coaxial region:

n=co

HII = k:
Z

n= -co

EAn Jn (ko r) + Bn Nn (ko r)3 e- j n

n=co

_EAnJ:(k0r)+ BnN'(k0r)3e-Jn_n

n=-GO

(2-2- 8_

(2-2-9)

E H = _PO
r r

n=oo

n = -oo

n EAn n nJn(k0r)+ B N (k0r)]e- jn (2-2- 10)

In the plasma sheath:

n=co

HIllz:kl2 Z EDn Jn(klr) + En

n = -Co

N n (kI r)] e -jn_ (2-2- 11)
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13=(D

= n n(klr)+E n 13(kl e-

13= -On

(2-2-12)

13=00

r=---'r - Z nEDnJn(klr)+En (kl e-

13= -- CO

(2-2-13)

where

If we let

(_)
k 1 = k 1 ..... ]_k 0V

l+J U
(2-2-14)

k--k -jk.
r 1

then

___ 1 (_) )2 (, t_

k r = (I i+(_)2 )+_ (i _ + y 21+ (_) 1 + (_)

(2 -2-15)

112 }i12

(2-2-18)

{_. (_) 11/2ki= [(1 _2 WP2
1+(----_)2)12+(1+(_ )2.... ;Y)2

-±(I
2

W

(f)2 }1/2(u)2)
1+_

(2-2-17)

In the free space:

HIV 2
z = k 0

13=0D

C
13

n = -riO

H(2)13(k0 r) e- j n (2-2-18)
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H(2)' (k0 r5n e-Jn_ • (2-2-19)

n=oo

r r
EIV = - b)_0-- n C n H(n2)(k0r) e- jn_ . (2-2-20)

11_-- --00

3. Formulation of the integral equations

Upon substituting the required E_ expansions in the boundary conditions

at r=aj r=b and r =c, i.e. in(2-1-1), (2-1-45 and(2-1-7)respectively,

one obtains

J , _'. '. (2)'

_/_0 K0/AOM 0 (ko a)
' (01)'+ BoH

(D

=E(_)
(k0a) + J'nz (k0a) cos _0 (_ -O+O ,

n=l 200
(2 -3-1)

ri=oo

! ! _

(AnJn(k0a5 + BnSn(k0a) ) e jn_ = _(_) (2-3-25

n=co

Jt_ 0k 0 _, (AnJ _(k0bS+B n

n=-oo

|

Nn (k0b) e jn _ = E (_) (2-3-3)

n=(D

Jt_N0k I
' ' - j n _ E (_)) , (2-3-4)

(Dn Jn(kl b)+ En Nn(kl b) ) e =

n = --00
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and

ll=O0

, , -jn_
(Dn Jn(kl c) + En Nn (kl c))e

n _ -Go

n=(x)

- J_V'O_O _ _n"n ""0-" -

n = -(1)

(2-3-5)

Applying the orthogonality of the circular functions to eqns. (2-3-I)

through (2-3-5), there results:

' t2)' ' :1)' 1

AoH' 0 (k0a)+BoH' 0 (k0a) - 2J00toP0k0
(9')d_' (2-3-6)

Ii 0°

i ^ n_"
COS --"_

A' : J' (k0a) E(_') (_' 0+00)d_' ;

n j O0_oUoko 7r 0_00 200
2 0 0

n>/1, (2-3-7)

, ,A Jn(k0a)+ B Nn(ko a) - 1 eJn_'
n n j 2 _rta_ 0 k0 (_}') d_'

_e-oo

(2-3-8)

, , i

An dn(ko n) -i-tine_ntKOUt _--j 2_,_0P0k0

¢0 ,__jn_' dd'
(2-3-9)

, ' 1

DnJn(klb)+EnNn(k lb) - j2rWPok 1

(2 -3 -10)
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and

1 ! !

I_(Dn Jn (klC) + En Nn (klc)) = Cn H(2)n (k0c) (2-3-1 l)

Combining Eqs. (2-2-7) with (2-3-65, (2-3-8) with (2-3-9),and (2-3-10)

with (2-3-11), one has three sets of two variable simultaneous algebraic

equations. Their solutions are

_V 0 H (1)' I+00
, 1 1 _ (0') dO'' (k0a) + 4j0

A0- - 800_0"0 J0 (k0a) 0c°Pok0 J0(k0 a) -00

(2-3-12)

' "Vo H(_)'(koa) 1 1 [_+e°

- ' + ' _0 _(_') d_',B0 800_.0 J0(k0a) 4j00w"0k0J0(k0a) -00

(2-3-135

A I ' '
= (Nn(koa) Pn -Nn(kob) qn)n ' ' '

Jn (kob)Nn(koa5 - Jn(koa5N'n(kob5

(2-3-14)

l ! !

B = , , , , ( -Jn(k0 a) pn+Jn(k0b5(t n ) ,

n Jn (k0b) Nn (k0a5 - Jn (k0a) Nn (k0b5 (2 -3-15)

[c ' ' )]1 H(2)' (k0°) Nn(kl b) - Pn Nn(kl¢

n E (klC) n(klb)-Jn(klb)Nn(koC n n

(2 -3-16)
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E
n 1 ' [-Cn H(n2)'(k0 c) J' Jn(kl c)]

(2 -3 -17)

where

i /0 4n _'

Pn = 2_rJW_ok 0 1 E(_') e"--r d_' o (2-3-IS)

-_0

qn - 27j_)_0k 0 _(_)')e jn_' d_'
(2-3-19)

We substitutethe required H expansions in (2-I-3) (2-I-6),and (2-i-8),themagnetic
Z

boundary conditions at r = a, r = h and r = c respectively,and obtain

GO

' ' (i)
AoH(_)(koa) + BoH 0 (koa) +ZAn J

n:l

n_"

n_r(k0a)cos _O0 (_ -e +e°)
2oo

n=lx)

= Z (An Jn (k0a)+ Bn Nn (k0a)) e- jn

n = -0O

e-o 0 _< j_ ..< o+o 0 , (2-3-207

[I_=0.) n=_rt

(AnJn(k0b)+B Nn(k0b ) ) e-Jn_ _2 _.n (Dn Jn (klb) + En Nn (klb))ejn_

n: -OO n = -00

- _0 < _ < _0 ' (2-3-21)



and

n=Go

_2 _--_(D n j(klc)+ E

16

n=oo

nNn(klC)) e -jn_: ZCnH(2)(k0 c) e-Jn_

n = -GO n = -GO

- 7r< _ _ _r . (2-3-22)

Upon using (2-3-22) we eliminate C
n

obtain

in the expressions for D and E , and
n n

1 ' (2)' Nn(klC)_ Pn_ENn(k Ic)H(2n(k0c)- l_H n (k0c)

(2-3 -23)

1 _n(klC) H(2)(k0c ) _ _. (2)'Hn (k0c) Jn(klc)'] Pn

n=- I t , 2) ' w I ,
E ]_ H(2) (k0c) _In(k lC) N(k lb) -J( k lb) Nn( k lC)_ -H( n (k0c)[J(k lc) N(k lb) -Jn(k lb) Nn(k lC_

(2-3-24)

Ifwe st_asUtate (2-3-14), (2-3-15), (2-3-23) and (2-3-24) in (2-3-21), we have

! !

n=GO Jn(k0b)Nn(k0a ) _ Nn(k0b )Jn(k0a)

! ! ! !

n=-GO Jn(k0b)Nn(k0 a) - Jn(k0a)Nn (k0b)

-jnp
Pn e

where

! !

GO

":_ Jn(k0b)Nn(k0b)' , - Jn(k0b)' Nn(k0b), q.,__.,e -jnp: _ 7rnPn e-jn_

n:-GOJn(k0b)Nn(k0 a) - Jn(ko a) Nn(k0b) n = -co

(2-3-25)
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7rE

_2)'. c)

k
n

_n %e)

Substituting(2-3-18), (2-3-19),and the identity

(2-3-26)

' ' 2

Jn(k0b)Nn(k0 b) - Jn(k0b)Nn(k0 b) - _ k0 b
(2-3-27)

in (2-3-25), we obtain

' ' I
Jn(k0b)Nn(k0a) - Nn(k0b)Jn(k0a) 0

, ; - _ ) E (_')e-jn(_-_')d_'

Jn(k0b)Nn(k0 a) - Jn(k0a)Nn(k0 b)

_o

2 Z £ (_')e-Jn(_-_)d_'

-_o< __<_o"

(2 -3-28)
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Upon interchanging the summation with integration on the left-hand

•_de, one obtains

n=co 2)

I E{IIII /"-_,T n '2)'

11=00

=- _._0 b
n-- -GO

I I

J(k?)Nn(k0a) - Jn(k0a)Nn(k0b)/

! !

Jn(k?) _Pn(k0 a) - Jn(k0a)Nn(k?)

@,

• 42-3-29)

We then substitute(2-3-7) and (2-3-t2) through (2-3-15) in (2-3-20),

rearrange terms, and using the Wronskian of the Hankel functions

H{l)'(k a) H_ )(k0a) - H{nI)(k0a) H(n2)_0a) : _
n 0 lr k0a

arrive at
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I V0

2 j00_J/_0k0 a J0 (k0a)

+

J n_ (k0a)

----- _0+%

i oo 2_ n_
.... -I

E(_')cos 2-O0(_'-e+00)d_ '

+

11=(30
i

2 z"J t°/'tO ko n=-_

- f°+°o

Jn(kob)Nn(koa) Jn(koa)Nn(kob) JO _0

n=oo
2 T I

Jn(k0a)Nn(k0 b)

O-O 0 < j_ < 0 +% , (2-3-30)

where e = I forn = 0and2forn# 0. We note that in (2-3-29) and on the
n

right handside of (2-3-30) the series are summed on n from -co to co. If

we employ the relations

Zn(r) = (-1) nZ n(r)

where

Zn(r) = (-1) n Z' (r)-n

Z (r) and
n

Z' (r) denote the cylindrical function and its derivative/
n
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one may simplify (2-3-29) and (2-3-30) respectively to

01)

2V"
kc_ ! 1 1 !

(2-3-31)

J (koa)n7

_ __ !17r Jr A v

.=o J'.,¢ko_s'°"o ,lo__
% --(7 _ 0

COB _0

_.(_o_)_(_o_)-_(_o_).o(_o_)_+°o
, , , , _ _(]_')cosn (]_-_i')d_'

Jn(kob)Nn(ko a) - Jn(koa)Nn(ko b) _0- 00

VO 1 2 80
+!

a Jo(koa) _rk0 a , o, , -"-, , E(IV)co,,,(_-_':_'

: _"o_)"n¢"0_)-_¢"0_)_%_),,__0

0-% < _ < 0+80 (2-3-32)
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Equations (2-3-31) and(2-3-32) are dual integral equations. Thus

the boundary value problem is reducedto the dual integral equations. In

chapter HI, we regard _ (_') as a known quantity and solve integral equation

(2-3-31). Then we insert this result in (2-3-32) to eliminate E(_9. An

approximate solution for F. (_') is obtained for narrow wedge and narrow shell

slot. The kernels of ih_ last two integral _,,_,..._......._._11ko _+,,,1_ar_r_.e.-.....

tivelyin chapter m and chapter IV; itis shown that these kernels have a

logarithmic singularitywhen _,_.)_ .

4. Terminal Admittance of the Wedge Waveguide

Using (2-3-6), the firsttwo terms on the lefthand side of (2-3-20) can

be written as

' (2)
AoH 0 (k0a)

' 2) ' I)' %_o(k¢)+Bo_o(%_) %
+B0_01)(k0 a) - 2J001/a0k0 ,-_i-"_'_ _ _(_t')d_',

%H'0 (ko_)+Boll'0'(k0_)-e-%

but

' ' (1)
• A0 H(2)(k0 a) + B0H 0 (k0a)

] " " (2)'(k0a)+B0 0 (k

= y(a)

and therefore

a 'u(2)¢_ _4-;_ '_.(l) Ckoa )"'0"" 0 '-'0-' -0-- 0 " d_' (2-4-1)



22

Uponsubstituting (2-4-1) in (2-3-20), we have

, nTr
_ 1 y(a) _(_')d_+ A J (koa)eos (_-_+0 O)2%_oko n n___

n=l 2e0

n=oo

= Z (AnJn(k0 a)+BnNn(k0 b))e-jn_ "

n _ -oo

(2 -4-2)

If one inserts (2-3-7), (2-3-14) and (2-3-15) into the last expression, one

obtains

Jmr(k0 a)

y_) / _(_,)@,= 2
(koa)

"o-e 0

200

cos nf E(_ )cos_"

_o% o

+ --00nZ0_n Nn(k0b) Jn(k0a) -Jn(k0b)Nn(k0a)-'7--"""U--, =--7""----'7--, +00 _ (_')cosn (_-_')d_'

= Jn(k0b)Nn(k0 a) -Jn(k0a)Nn(k0b) _00

eo 2_ Cn
--- , , "- , , E(_')cosn(_-_')d_'.

7 _rl¢9 a : Jn(k0b)Nn(k0a)_Jn(k0a)Nn(k0b)

(2-4-3)
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Multiplying (2-4-3) by _..(_) d_ and integratingfrom 0 -00 to 0+00, we have

CO

n=o

! !

J?(ko_)_(kob)-_(kZ)N(k_b)rO% fO%,,

_(kOb)_.(kOa) _(kC_)_o(kOb)';o4o J0+%

%x-' _n % 0
-j--/__ , , --, , d_(_ Z(_')cosn(_-_')d_'.

" ":°J_(kc_)N_(k°_)-_'(kO_)_(kOb)% -_0

(2-4-4)

One may note from (2-I-14) and (2-1-15) thaty(a) is a dimensionless quantity.

Ifthe value of the terminal admittance Y(a) of the wedge waveguide is of

interest, then by virtue of (2-i-11) and (2-I-14), we have

Y(a)- 2 y(a) • (2-4-5)

In A-I, assuming the solution of integral equation (2-3-31) is obtainable,

the stationary property of (2-4-4) with respect to a small variation of _ (_) is

established. Thus in order to use (2-4-5) to calculate the terminal admittance

Y(a) , one needs to solve firstthe integral equation (2-3-31).



CHAPTER HI

SOLUTION OF INTEGRAL EQUATIONS (2-3-31)

1. Introduction

The _-directed electric field in the shell slot E (_) may be considered

as the sum of E (_) and E0(_) , respectively, symmetric and antisymmetrice

part with regard to _ = 0 (Olte, 1965).

Since

and

_0 Ee(_) sin n _ d_ = 0

_JOEO(_) c°sn_d_ =
0

One may split (2-3-31) into two integral equations:

l I ! !

Ee(_')Zen n_2)_.c)J(k0b)Nn(k0a)-J(k0a)NnCk0 b)
-_o _.o ,,

cos n_cos n_}' d_'

2

a)

n_O
e+eo

, , cos(_,_ , _(_,)

J(kb) N(koa) - Jn(koa) Nn(kob) e_Oo

COS n_' d_'

(3-I-i)

24
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-_0 n=0 L n 0

uk 0 b

co pO +O n

! ! 1 t

n=l Jn(k0b)Nn(k0 a) -Jn(k0a)Nn(k0b) 0 -00

(3 -1-2)

For large value of n, one finds

H(2)(k0 c) k0b

(2)' n
fn H n (k0c)

1 (b)2n
1+ - c 1_2

l+(b) 2n
C

.b)2n

t + (b)2n
C

_2 (3 -1-3)

and

!

Jn(k0b)Nn(k0a) - Jn(k0a)Nn(k0 b) k0b l+(_)2n

! ! ! !

jn{kob)Nn(koa) .Jn(koa)Nn(kob ) n 1 -(b )2n

(3 -1"4)

As n --_co

!

H(2){k0 c ) Jn(k0b)Nn(k0a) -Jn(k0a)Nn(k0b)

_" _2) 1 _ ! I !n (k0e) Jn(k0b)Nn(k0a) _ Jn(k0a)Nn(k0b)

kob
_ _ (1+_ 2)

11
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Thus if we define

H(20)(k0c)

"o- "o_o),_oO)

! !

J0(k0b)N0(k0a) - J0(k0a)N0(k0 b)

! I I I

J0(k0b)N0(k0a) - J0(k0a)N0(k0 b)

(3-i -5)

11)( ! iH (k0c) Jn(k0b)Nn(k0 a) - Jn(k0a)Nn(k0 b) k0b

_- m _. 2)' ' ' ' ' +(l+k2)--

n n i_ n (k0c) Jn(k0b)Nn(k0a) _ Jn(k0a)Nn(k0b) n

! ! I

k0b _"_ [J ,(k_b)N (l_c) -J(k.c)N ,(kb_-I_2)(k.c)-_ I_2)(k,c)[-J .(ILb)N (l_c)-N .(k.b_/(kc_
_Ln-_t nl n_ n-11_ p u n u Ln-1_ n_ n-t_ n_

n L" k (k0c) (klc)N(klb)-Jn(klb)N ( - klc)N(klb)-J(klb)N(

Jn+l(k0b)Nn(k0a) - Jn(k0a)Nn+l(k0 b)- 7 ; ", 7

J(k0b) Nn (k0a) - Jn (k0a) Nn(k0b)

(3-i-6)

then the series which represents the kernels of integral equations (3-1-1) and

(3-1-2) respectively become

! !

Jn(k0 b) Nn(k0a) - Jn(ko a) Nn(k0b)' _
; ; - _ )COS n_ COS n_'

Jn(k0b)Sn(k0 a) - Jn(k0a)Nn(k0b)/

GO (3O

, _ _o_,__o__,-2(_+_ kob_co. _ _°"_,
n=O n= I

(3-i-7)
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co (2) ' '
/ H n(k0c) Jnlk0b)Nn(k0 a) - Jn(k0a)Nn(k0bl_

n= I Hn _0 c/

sin n_ slnn_'

- _I n

n=l

(D
m

_,-.._o,....,_,-_,,+_:__h_ si.._ sinn_'
J

'_"-==Y ..... r - "....... 0 -z-'-a n

n=1

(3-i-8)

From (3-1-3) and (3-1-4), it is easily found that as n --# co

.b)2n
H(2)(k0 c) -_2 k0b _2 _c

Irn (2)' + -- ----P 2 kob
H n (koC) n n

and

! !

Jn(kob) Nn(koa) - Jn(k0a)Nn(kob)

! ! ! !

Jn(k0b)Nn(k0 a) - Jn(k0a)Nn(k0 b)

2 kob

a.2n

n

Therefore the series

00

n=l

converges, and thus

_O

n=0

cos n_ cos n_'

O0

n=l

sinn_ sin n_'
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!

converge uniformly in the region -_0 _ _' _ _ _0"

Hence if one replaces the infinite series with the finite sums

N

E
n

n=0

1" cos n_cos n_'n

N

_"'r n sin n_ sin n_'

n=l

then the error over the square region - _0 _< _' _' _ _0 is less than a constant,

independent of (_, _') .

Upon substituting (3-1-7) and (3-1-8) in (3-1-1) and (3-1-2) respectively

and replacing the uniformly convergent series by their finite sum, we obtain

I'° {tEe(_,) cos n_cos n_' _ 1 c
n

3"
n COS n_ cos n_t d_'

(k 0b) -2
GO

En

n=O

COS n_

! ! ! !

Jn(kob)Nn(koa) -Jn(ko a)Nn(kob)

n_' d_'

_e-oO
(3-1-9)

J-_O n=l

N

T
n

n=l

sinn¢sin n_'}@'

= ¢_÷%

= _2 n_'_.l , sinn_ _ _{_')sinn_'d_'7( l+l_ 2) (k0b) 2 ' '._. Jn(k0b)N'n(k0a) - Jn(k0a>Nn(k0b),,0-0°

(3-I-i0)



• 29

These are the two integral equations to be solved in this chapter.

2. Noble's Scheme

In this section• we reproduce a scheme due to Noble (Langer, 1962) to

solve an integral equation of the form

N

_ _"_''L"''r" "' ",/,"n'"' _"" "J-" -"-"
A n=0

(3 -2-1)

If one knew the solutions of the auxiliary integral equations

F(_ ')K(_, _')d_' = G{_)
(3-2-2)

and

_A f (_')K(_ _') d_' =_n(_) n=0 1 2 N

n • • • • _'_ ')

(3 -2 -3)

then upon substituting (3-2-3) in (3-2-1), we have

E(¢')K(_, _')de'+ E(_') (¢') fn(_) K(¢, ¢") d_' de'

n=0 JA

Let

_I _ _t_,_ _K tatl_ _t

n _n_V t
!
OA

Then (3-2-4) reduced to

n=O

= G(J_)

= G(_) .

(3 -2-4)

(3 -2 -5)

(3-2-6)
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Upon comparing this equation with (3-2-2) we have

N

E(¢') = F (¢') - a. .
n=0

Multiplying both side of (3-2-7) bY_m(_') and integrating over the

interval A _< _'_< B, we arrive at

(3-2-7)

+ u_)m (¢') E(¢') de' fn(_') _m (_) de' F(¢') _)m(¢ ') de'

m =0, 1, 2, . . . N .

We let

Am. de'
(3-2-8)

(3-2-9)

then

N

+ on Bo m Amn m

n=O

, m=0, I, 2 .... N (3 -2-1o)

From ,a n.^,(__z_lu;, we are able to determine o .
!1
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3. Solution of (3-I-9)

Comparing (3-1-9) wlth (3-2-1), we observe that

E(_') = E e(_')

T QOS "_D_vz E
n n

COS n_

2¢l+_kob
_o_)r -(e)

11 11
f ! I !

Jlkob)N n(ko a) - Jn(koa)N n(ko b)

where

r¢_)=__°E¢_ _o_,_,d_,
%

(3-3-1)

and the auxiliary integral equations are

I_O _OI_V)n_1 COSn_ c°s n" d_V- 1 n=_ Jn Cn c°s(r"_P(e)0" n_- . ,..,2 , , , ,
_o _I-,-_¢k . Ck_jk_-_jk_Njk_

-1_0"-<_ _<P_o• (3-3-_.)

and

J-J_o _ .2(1"l'k-)kob

cosnj6, n=0,1,2... N,

-_o__<_o • (3-3-3)
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These two integral equations can be solved by employing Schwtnger's

transformation (Lewin, 19515 which is defined in (A-2-4). For detailed

derivations of the solutions, the reader may refer to A-2 i here we only state

the results:

•-- cos _2 f S(; ) a_ m_ e) r • 2_n ">_0_

+o>+=r l--_+ -_oo:L:oo+:cc.c_co:_oo_J
u tN._ff _CBC'_"

- _0 < _ < _0 ' (3-3-4)

__c°s mn -i_+_ +I: _ oo_mo:_o=_o_o,
Ow 0 '-t/1"gncsc-_

(3-3-5)

where

r(e5_ o p op
_0

---- I I I !

p:O Jp(k0bSNp(k0a) - Jp(k0a)Np(k0b5

(3-3-6)

oo r,(e! x

I: pmpS =2 , , , ,

p=m Jp(kob)Np(koa) -Jp(koa)Np(kob)

(3-3-75

and

X

mp
ds (3 -3 -8)
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Therefore the solution of equation (3-1-9) is:

%b_{e)l Xon _m r -_. ,._0 . _.llx nCOSL_cos_cscTcosp-co_

-_0 < _ < _0 (3-3-9)

In the last equation, the coefficients _(e) can be determined by solving the
n

simultaneous equations

(x_ + _k a(e)A (e) (e) (3-3-10)=B , m=0, 1,2 .... N ,
n mn m

n=u

where

A(e) = e T ) cosm_}d_ , (3-3-11)
1Iln In HI

Ble)=em m _'m _0 F(0)cosm_d_ , (3-3-12)

%

To express A (e)....and B(e) explicitly,
JULaLA _*_

(3-3-4) in (3-3-12) and obtain

v_substitute (3-3-9 in (3-3-11) and

,{xx $, x}A (e) : {m m on om + q X , (3-3-13)

mn 2(I+I¢2)k0 b {In4_r2 t n csc
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(3 -3 -14)

4. Solution of (3-1-10 I

To start this section, we introduce a transformation

W(0 ) = E0(0')d 0'

-00

(3-4-1)

forthe oddpart of the unknown slotfieldjE0(0). Since for 0' < 00 • E(0') behaves

as

.

butis othe_isecontinuo=_,thereforetheint_gral_'-00E0@')'÷_. dOexistsandthe
"0

function W(_ is defined at every point inside the closed interval - 00__0 -_00

while its firstderivative exists in the corresponding open interval. Thus one has

E0(0)= dO ' -_0< 0 < 00

Also because E0(_) is an odd function of 0, W(0) is symmetric with respect to 0-

One may set

w (-_0) = o

and it then follows that

= o

Thus integrating by parts
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_0

E0(_') sinn_' d_' = sinn_'W(_')

%

n(,¢o(¢,) cos= - n_' d_'

%

._ w(¢,)_os_¢,de'

(3 -4-2)

Let

F(n0)= I _(,') sinn,' d,'.

-e-e o

(3 -4-3)

Applying (3-4-2) and (3-4-3) to the integral equation (3-1-10), we obtain

¢o (=

I (_')_ _. sin n_ cos n_'

% t"=I
i _'_n_r sinn_cosn_'}d_'

(1+_k0b n= I n

co [_(0)sinn_
2 n

7 (l+k_(k0b)
2 ! ! ! !

n = 1 Jn(k0b)Nn(k0a) - J(k0a)Nn(k0 b)

(3 -4-4)

Last equation has the same form as (3-2-1), i.e.,

E(¢') =

K(_, _')=

G(¢)

w(¢')

_. sinnpcosn_'

n=1

_= 'n ..... r

sin n _

(i +k_ (k0b)

2 n_ 1 _ (O)nsin n¢
(kob)2 ' , -', ,_r(l+_ = Jn(k0b)Nn(k0a) - Jn(k0a)Nn(k0b)
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The auxiliary integral equations for (3-4-4) are:

_¢o co
(o ,Fo__ s_n.__o.._'d_'-

j_¢o n=l

2

_r(l+k2)(k0b) 2

co P (O)sinn¢
n

J n(k0h_n(k0a ) -Ju(k0a)Nu(k0 a)

-¢0 < ¢ < ¢0 ' (3-4-5)

¢o co

f(o)(¢,) _sinn(eos n¢' de' : - i sinn¢ ,

-¢0 n n : _ (1 + k'2)(k0b)

-¢0 < ¢ < ¢0 " (3-4-6)

We may again apply the SchwingerWs transformation to the last two inte-

gral equations and obtain the solutions for F_V)(g)'^ and f(o)(g). Similar to
n

last section, we leave the detailed derivations to A-3 and state the results as:

(l+__2)(Irkob)2 cos m-- I
-go < g < go"

(3-4-7)

_2 l COcosg 0 _b (0) U (g) g<f(o)(g): cos _/cosg- , %< g0
(l+k-2)(Trkob) _--1 nm m

where

CO O0

a(0) = 1_( c L X _ _ 2 p)
m 27r p=m-1 p p m-l,p p=m+lLpXm+l'

(3-4-8)

(3-4-9)

b(O) I _ n-_j 1,P )nm = 2--_( c X - 2X m÷
p=0, 2,4, p m-l,ppffi

• n = odd , (3-4-i0a)
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n-1

b(0) 1

nm= _" p=_o 5 (Xm-I,P - Xm+l, p)
I1 = 6veil (3-4-I0b)

m-1

• (-1)m - P(m - p) cos [PUm(_) =p_=' p
-1 2_0 ._)]cos (esc _-cos¢ - cot 2

-¢o < ¢ < ¢o ° (3-4-11)

and

L
P

a)

m =P+loP+3,..

F_(o)
m

J re(k0 b) Nm (k0a) - J m (k0a)Nm (k0b)
(3-4-12)

Thus the solution of integral equation (3-4-4) is

w(¢)-
(l+k"2)(_-k0b)2

' {m___ a(O)Om(¢)
_cos ¢ - cos ¢0 m

+ _rk0b n b(0)nmU m (¢) " (3-4-13)

In the above expression° the coefficients a (0) can be found by solving the
n

simultaneous equations

jo)+ A(°)Jo): BC°)
m _ mn n m

, rail, 2, . . . N , (3-4-14)

where

A(0)mn- f ¢0

-¢0

m v cos(m ¢_f(0n)(¢')d ¢'m
(3-4-15)
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_0

B(O)m = _ mVmCOS(m_')F(O) (#')d_'
t/

-¢0

(3-4-16)

We perform the integrations in Appendix 5, and obtain

A(0)= sin_-_)m_'m _b(0)

mn (l+_-2)(_k0b) _ np (c°s(pTr)X0m - Xpm) "

(3-4-17)

B(O)= sin_)m'rm _. a(O)(cos(p_)Xom - Xpm) •

m (l+_2)(,k0b) 2 p = 1 P

(3-4-18)

The antisymmetric part of the _-directed electric field in the shell slot

can be obtained by differentiating W (#), i.e.,

EO(O )_ d_ • -00 <O <O 0 •

We carry out the differentiation in Appendix 6, and state that

sin _2

(l+k'2)(Trkob)2 _/cos_ - cOS_o

co a(O) N (0) _==qb(O)
cos Um(¢) + 7rkob _ Um(_})

m n _ nm

IMP-- (O)mVm( n_l (O) m_= :Om)mVm( l }+ (1 + cos ¢) a ¢) + 7rkob cT b ¢) ,
m __. n __.

-¢0 < ¢ < _0 ' (3-4-19)
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where

v (¢)=z+ 2
m

-1
COS (csc 2 -_- cos ¢ - cot 2 )

=2

m-1

p=l

COS
_p -1

COS (csc 2 _ cos _ - cot 2

, m odd •

(3-4-20)

• m even

5. Discussion

In the first sectlon of this chapter, we obtained a pair of integral equations

(3-1-9) and (3-1-10) from (3-1-1) and (3-1-2) respectively by truncating the

uniformly convergent series. Therefore (3-3-9) and (3-4-19) axe the approximate

solutions of (3-1-1) and (3-1-2)• respectively. The accuracy of these approximate

solutions depend largely on the value of N. But N + 1 and N, respectively• axe

the degrees of freedom of the simultaneous systems (3-3-10) and (3-4-14). We

may encounter the usual difficulties of solving a large simultaneous system of

algebraic equations. We attempt to reduce this difficulty here.

Expression (3-3-9) suggests a transformation

N

z(e)= a (e)X . (3-5-1)
m n mn

n-m

Upon substitutingthistransformation in (3-3-9), one has

Ee(_) = _f_ c°s_ 2 _ S_e)

_r(l+_2)(k0b)2 Vcos' - cos_0 t4 2, n csc _

°° ms(e) _ _ ]+ m _m -I (csc2co cos cos ¢ - cot2 -- )
g===_ 7f L I'mr1
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_k0b I 1 _ z(e)+m_=N m (e)
-_z Cos(m

-47r21ncs c _ m
+ 2 0 _r

-¢o<¢ <¢o

cosl(csc2 _- cos# -cot2

(3-5-2)

T_we multiply (3-3-10) by

we have

(e).
z
P

Xpm o and sum on m, with the knowledge of(3-5-I),

_ c=_XoXpm _(e) I N N X ),(e)
m-o _'0 +- '_ q (_1"Jqm pm q

8 2 (l+_2)(kob)l n c s c._O_ _2(l+k2)ko b m=p

S(e) N

= 1 _ _ m_p em_mX0mXpmIr(l+_2)(k0b)2 4 Ir21ncsc =

+_22 _qS (e) _, 1"JqmXpm
q

Ir q=l m=P

Upon multiplying (3-5-3) with the factor R defined as

492 (i+k'2)k0b

N

(3-5-3)

(3-5-4)

o_e obtains a new system of equations

(e) Sop (e)

R z - - ¢0 z0P

2Lncsc _-

N qS z(e)

-4q_ 1 qPq

= ¢osop+s ,kobStop.
_rk0blucsc -_"

p=O, Io 2, ... N
(3-5-5)
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where

S
qP

N

m=p

¢ • X X
m m qm pm

(3-5-6)

_D

have

[aqp]. z(e)l = bp]P J , q, p=0, 1, ... N . (3-5-7)

where laqp] denotes asquarematrlxoforder N+I, while z_ )] and bp]

denote the column matrix of the same order. Comparing (3-5-7) with (3-5-5),

we obtain

aop -- B6op Sop
¢o

21ncsc _-

aqp =RSqp-4qSqp , q # 0

where

(3-5-8)

5 = 1, ffqffip ,
qP

= 0 , ff qfp

and

b
P

S(O co mS (e)

¢o sop '_8 _ mmX___l_k ob"Stop
7rkobln csc y

(3-5-9)

S
qP

(3-5-7).

plays an important role in further reducing the matrix equation

In the following paragraph, we state some of the properties of S •
qP
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In Appendix 4, we show thatfor any _0 " Xqm 0 when q _ m.

Upon employing this property of Xqrn, we may conclude that S isqP

symmetric with respect to its subscript index q and p, i.e. •

s = s . (3-5-I0)
qP Pq

We recall that Tm is defined by (3-i-6). It depends on k0a , k0b , k0c

and k. For m > m 0 (m 0-_ 2k0b < N), v behaves as )2m + ( )2mm m

w 1 [ 1 b)2m ] wfor "P-a)_ 0 and as _ m(m-l) + ( for p_ =0. For m<k0b,

the v values are large and may be oscillatingin sign. From the (A-4-5)
m

property of Xj k which is also explicitlyaccounted for as far as the p

subscript is concerned in the definitionof S in (3-5-6),we see that as p
qP

increases, the sum mal_ng up S consists of terms involving v for which
qp m

m>p. But the Vm terms decrease rapidly once m>m 0 and thus since

il[Xjkl< 27r we see that Sqp will decrease rapidly once p > m 0 . Because

of (3-5-10)o the same behavior is exhibited also on the q subscript of S
qp"

The properties of S are further modified ifwe consider the angular width
qP

of the slot 2¢0 " From the discussion in Appendix 4, . itis clear that for

¢0 sufficientlysmall, there is a number j such that

N

Xj k 0 • k < m 0 .

The net effect of this is that the magnitude of S is further reduced as either
qP

q-subscript or p-subscript increases.

In view of this discussion as can be seen from Eq. (3-5-8)• the matrix

aqp can be reduced in size. We indicate the size of this reduced matrix

by N'. In fact, for a very narrow slot, we only need to consider in the matrix

the firstelement a00, i.e., N' = 0.
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If the slot is very wide, (_0_ = _ - Ao Ais very small) then _]Xjk_-- 2_6jk

and Sqp --_ (_q/_0)Sqpe_ q, p = 0, 1, 2°... N. Therefore the matrix [qPj_a7
becomes a diagonal one, i.e., the problem becomes a separable one.

The fact that S in (3-5-8) is multiplied by q does not change the
qP

order of magnitude of our arguments.

For the odd part of the _-directed electric field E0(_) in the slot_given

by (3-4-20)o we introduce a _=.._,_, ......

z(O)p= m___N (O)m mpb(O)
(3-5-11)

Then

E0(¢)=
_n_ r 2 ¢o re(C)]

_r _'_ (= (o,Leo.rUm(_(l+oo_,v
(l_2X_kob_l/oo__o_¢0 m

N

+ _rkob
m=l

,Corn)o2 T

where Urn(_) and

(3-5-12)

Vm(_) are given by (3-4-11) and (3-4-20), respectively.

Upon using the transformation (3-5-II), (3-4-14) can be reduced to a new

simultaneous system of algebraic equations. We express this new system in

a matrix form

1.
r -1

where _aul is a square matrix of degree

matrix of the same degree. The elements of

a' = R' + sin2(_)IT cosq_-T ]
qq _ qq

N, z (O)]p-J and bp] are the column

are, respectlvel_

a' = sin cosqlr-T ) • q_p
qP qP

(3-5-14)
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and

b'=sin2"_20"p mt a(0)=1 m [TopC°Sm_r-Tmp] (3-5-i5)

In the above equations, we define

R' -
(1+_ 2) (rk0b)2

N
b(0)

m_= m_mXlm ml

(3-5-16)

and

N

r - m=P

qp N

Ti . _(0)m_rnAlmDml

my X b(0)
m qm mp

(3-5-1"/)

We observe that in (3-5-13) T
qP

X _0 ff T
qm qp

q > m, therefore

_mv X b (0)
m qmmp

T = m=q .....

qP _=q my x b(0)
m lm ml

we note that from (3-4-10)j lb(°)I
Imp

plays the same role as S
qP

becomes

in (3-5-7).

(3-5-18)

< m, thus in the numerator at (3-5-17) v
m

2
is at most multiplied by m . But since • decreases rapidly for increasing

m
2

m when m > m 0 the _m behavior will prevail over m . Therefore the magnitude

of T will decrease rapidly as either p or q exceeds m 0. The effect of theqP
slot width enters into T in a similar manner as for S .

qP qP
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Based on the abovediscussion• weconclude that [a_,_l can be reduced in size
L --_-j

for a narrow slot. We denote this reduced size by N". For a very narrow slot•

we may choose N" = 1• i.e.• we only need to consider the first element all .

For a very wide slot• because of the property of Xj k • T = 6 .qP qP
is thus reduced to a diagonal form.

Matrix

Solution for Narrow Slot

In this section• we shall extract the solutions for the narrow slot from the

general solutions (3-5-2) and (3-5-12). This is a case of some practical im-

portance. In the later chapters• we use these results to attain an approximate

solution for the _-directed electric field in the wedge slot and to have an

explicit form of the terminal admittance of the wedge wavegulde.

If the slot width 2 ¢0 is so narrow that we may apply the approximate

relations

X --_ 1- O(N ¢02)
op

Xlp --_ 0 (N ¢2)

to (3-5-2) and (3-5-12)• then we may neglect all terms of order

results are:

O(N¢2). The

Ee(¢) Voo  -oo  o
4 Ir3(1 +_2) (k0b)2_n csc

-¢o < ¢ < ¢o (3-6-1)

and

_f'_ (a(0) + 7rkob Zl (0_ sin_2

(1 +1_"2) (Trk0b) 2 _/cos ¢ - cOS¢o

cos_°_Ul(¢)+ (1+ cos¢)vi(¢)} < ¢<¢0 (3-6-2)
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Since UI(¢) =-I, VI(¢)= 1.

reduced to

E0(_)

(Eqs. (3-4-11) and (3-4-20)) (3-6-2) can be further

lf_(a(10) + _ k0b z(10)) sin _ cos_

(1 + _2) (_k0b)2 - oos o
• -_[0< _ < _0 " (3-6-3)

(e) and z(10) in the last two equations can be obtainedThe unknown factors z0

by choosing N = 0 in (3-5-7) and N = 1 in (3-5-13), i.e.,

_(e)

(R S00 (e) _0

¢o )"o - ¢o s°°
21n csc _- Irk0b Ln csc -_-

(3-6-4)

and

_0
sin2 --

l_,Z(10)_ 2 a_0) (3-6-5)

(1+_ 2)(_k0b)2 T01 "

_o) ¢_From (3-6-5), itis seen that z is of O( ), therefore we may neglect

z{10)'-in comparison with a_0)" in (3-6-3). Upon substituting (3-6-4) in

(3-6-1) and reorgsaiz Ing terms, we have

8_r2(1+_2) (k0b)/n

S_e) cos _2

N ?cos#cos
csc - emVrnX0 - ¢0

-_0 < _ < _0" (3-6-6)
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Employing the approximate formulas

2

cosy_ 1 -y ,

siny=y , y<< 1 ,

the even part and odd part of the slot electric field can be further simplified

to

4S (e)
0

_rkob [8Ir2(I+ k'2)kob _n _0 -
'm Xom '

m--b

and

a_°) ¢
Zo(¢)= o

/_+__o_,_ _o___-'

-¢0 < ¢ < ¢0 " (3-6-7)

-¢o< ¢ < ¢0 • (3-6-8)



CHAPTER IV

APPROXIMATE SOLUTION OF

INTEGRAL EQUATION (2-3-32)

1. Introduction:

If we interchange summation with integration and reorganize the terms

on the left hand side of (2-3-32), we have

8+60 =

J0(k0 a)

+j_(ko_)+

n_" n/r

e0 J 0%a)N_%b)-J_%b)N0(k0 a}

t ! _ t t

7r J0(k0b)N0(k0a) J_%a)N_(k0b)

+

n_ (koa)

co 2e0 k 0 a

-g
_o _o

e
mr nTr 0

oo__oC,Oo+Oo>OO%_,÷O-Oo)+7•2Z(j_%%%_J(k0a)N_%_ _osn(,¢' d_n=l

_r = J_(k0b)N_(k0a)-J_(k0a)N_(k0b) l_¢')cosn(¢-_gd¢',

-_0

V0 1 2

a J_d Irk0a

e-eo <_¢ <__e+eo (4-I-I)

From the recurrence relation of cylindricalfunctions

z Zp+ l(Z) = pZ'(z) - z Zp(Z) ,P

one may easily show that

J nz- (k0a)

_ ka0
J'nlr---(koa) n_r

0

2k0a 8 0

/r

J(_; 1)(k°a)

nJ'n. (k0a)

48

(4-1-2)

(4-1-3)
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and

Jn(k0a)Nn(k0b)- Jn(k0b)N(k0 a)

J_k0b)Nn(k0a) -jn(k0a)N_k0b) -

koa.
n n Jn(k0b)N_k0a) -Jn(k0a)N_(k0b )--

(4-1-4)

For n_, > > k a in (4-1-3) and n > > k0a, k0b in (4-1-4) the last two equations
0

_J

behave, respectively, as and + n (b) . Therefore the second and the
rl n

third series of the kernel of integral Eq. (4-1-1) are uniformly convergent on a

square interval

e-e0< ¢,¢'< e+e 0 ,

while the first series has a logarithmic singularity when _' _ _. Thus the

chance of solving (4-1-1) depends largely on whether or not one can solve the

integral equation

1 cos _0 ri cos u_rrl' + cos nw cos nrl' W'
0_00 F(rl') 111" _0 d = G(11) .

Unfortunately Schwinger's transformation is not applicable to this integral

equation. Therefore, to solve (4-1-1), a new transformation of some form is

required. Ifboth thewedge slotwidth 200 and shell slotwidth 2_0 are much

smaller than unity, we may substitute(3-6-7) and (3-6-8) in (2-3-32) and then

employ Galekin's method(Kantorovich, 1958) to obtain an approximate solution

for the integral equation (2-3-32).

2. Reduction of Integral Eq. (2-3-32):

In Eq. (2-3-32), the variables _ and _' are referred to the center of

+h^ oh,,11 ._1^+ ,..h.l_ ÷h,_ .nlrnn_ flme_Hnn |R the _-directed electric field in the

wedge aperture. It is more convenient to express (2-3-32) as function of a new

set of variables q and q' defined as

(4-1-s)
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_=¢-e ,

_'--¢'-e . (4-2-11

It is seen that from (4-2-1}, _ and _' are referred to the center of the wedge

aperture.

Upon substituting (4-2-1) In (2-3-32), we obtain

J n_ (koa)

co 28o n_

n=0 cn J'nTr (k0a) cos _0 (r}+ e0)

eo

f _(_')cos n_r, ,. v'_r/ *- O0) d
200

- O0

Jn(k0a)N;(k0b) - Jn(k0b)Nn(k 0a)

Ca Jn (k0b)Nn(k0a)- Jn(k0a)Nn(k0 b)

eo

]_(r/') cos n(rl - rf) drT'

-e 0

VO 1 1
_+

a J_(k0a) lrk0a Ir jn(kob)Nn(koa)_jn(koa)Nn(kob ) _ E (rlgcosn(rl-rf)drl' .

- __¢0_e

(4-2-2)

A

In (4-2-2) we may regard E(r71 as the sum of a symmetric part Ee(_)

antisymmetric part F.0(rll ; thus

and

_(r/) = Ee(W)+ EO(rl) .
(4-2-31

Since cos _n_ (_+ eoI is an even function of

function of _ when n is odd, we have

when n is even, and an odd

0 o

_'e(qlc°s2__ (_+ 00)dq

J-°o o

= 0 , n= 1, 3, 5, ... (4-2-41
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- 0 n = Oo2, 4. .... (4-2-5)

We also know that

eo

_e(_) sin nvdv

100

= 0 (4-2-6)

0o

I _o(n) cos u n d n = 0

-O0

Ifwe substitute (4-2-3) into (4-2-2),

we may obtain two equations:

(4-2-7)

and use the relations (4-2-4) through (4-2-7)

e (_') c°s n--_"80(n ' + 00) d rt'

Jn(k0a)Nu(k 0b)- Ju(k0b)Nn(k0a)

Jn(k0b)Nn(k0a) Jn(k0a)Nn(k0b) cos n rl

8 o

__ _ (_')cosnn' dne

eo

v
"0 1

a J_(k0a)

flf%

+

7rk0al, _ =

(e)

Jn(k0b)Nn(k0a) -J n(k0a)Nn(k0b)
(4-2-8)
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and

J 2n- 1 (koa)

200 2n-1 2n-1 .

j, (k0a) _cos _ 7r(r_+ O0) Eo(r}' ) cos _ r (r}' + 00) d rfn = 1 2n - 1 r 2_ 0
_Tf

280 O0

Jn(k0a)NVn(k0b) - Jn(k0 b)N(k0a)

+ O--_Orn=l_ Jn(k0b)Nn(k0a)-Jn(k0a)Nn(k0b) slnn_

0o

I _'O(T)')sin n T}'dv

-e0

2

rkoa

O0 _ 7n (0)sin n r}

Ir _= Jn(kob)Nn(koa)-Jn(koa)Nn(kob)"
(4-2-9)

where

_¢o-e

vJe) _-
-¢o-O

E (z/)cosn wd r/ , (4-2-10)

and

¢o - o o(o)
J

-¢o-0

E(n)sinnndq
(4-2-ii)

In the preceeding chapter we expressed the shell slot field as function of _,

therefore to perform the last two integrals, it is more convenient to go back

to the _ variable. If we employ (4-2-1), then (4-2-10) and (4-2-11)

respectively, become

_0

7n (e) = cosnOf Ee(_')cos u_' d _'
J
"¢0

+ sinn0 Zo(¢')sin he' d¢' (4-2- 12)
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and

(0)
n = cos n {9 E0(_')sinn_' d _'

Ee(¢ (4-2-13)

If we limit ourselves to the case that the angular width of the shell

slot 2¢0 is much smaller than unity• then substituting (3-6-7) and (3-6-8)

in (4-2-12)and (4-2-13)• respectively• and neglecting the term of 0(_02) ,

we obtain

4 Se(e) Jo(n ¢0) cos n {9
7 (e) _ (4-2-14)

O0 •

n 2_n__ c.r X 2kob[8_r2(l+k'2)kob_n_ 0 n n Om ]

and

4 s0(e)j0(n_0)sin n {9(0)
--_ (4-2-15)7

n 2 N "
- X 2

kob[8_'2(l+k'2)kobJ[n_ 0 n=_'_"q--JOen'rn Om ]

As was stated in the introduction of the present chapter• we confine

ourselves to the case that the angular width of the wedge slot is much smaller

_r
than unity. Therefore __ > > I, and the first series on the lefthand side of

0
(4-2-8) and (4-2-9)• respectively• can be approximated by
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J n_ (koa)

co O0

 o O+Oo= j_ (koa) cos

_0 "eO

n_ ._ v

e(n') cos--00 (rt + eo) dr_

O0 _ 2k0a
n

n=l

0 o

nTr(n+00) _ ]_ (n')cos nTr 0(003 )
cos 00 _ e _0 (r3' + 00) d rf +

-00

(4-2-16)

and

J2n-I (k0a)

2 (k0_ cos 2n -1 ^ 2n - 1n= 1 J'2n- 1 _ 7r(r/+ 00) Z0(r/')c°s -_0

20---0 _ -00

7r(rf + 00) d rf

00
2k0a 2n - 1 _ 2n - 1

N 00y-i-Trn= 1 (_n-l") cos--2-_0-0 7r(_+00) } _3(n')c°s _0

-00

_r(n' + 00) dn' + 0(003)

(4-2-17)

Ifone inserts (4-2-14) and (4-2-15) into (4-2-8) and (4-2-9), respectively,

and introduces the notations

(i) 1
v - (4-2-18)

n Ju(k0b)Nn(k0a)- Jn(k0a)Nn(k0b) "

(2)
V ffi

0

J 0(k0a)N_)(k0b) - Ji)(k0b)N0(k0a)

J_(k0b)N _ (k0a)- J_(k0a)N_(k0b) '

v (2) = __k0aJn- 1(k0a)Nn(k0b)-Jn(k0b)Nn- 1(k0a)

n n J _(k0b)Nn(k0a) - J n%a)Nn(k0b) '
n#=O

(4-2-19)
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o

one arrives at

Jo(koa } e 0 + _ co

-e 0

2k0a _ 00
D.1/" A t

n _O(rl+ O0 ) Ee(ri )cos u---_(rl'+O0)drfcos _0

v-e 0

°'- % _o_' " 20
+ _ COS nr] e n n

_.___ . _eo -eo

2 00

_k0a

(e)
4S o

k0b [8_r2(1 + _2)k0b !

N

CO 11

,o,o o:l  ov,oso ooso,

(4-2-20)

and

u_--1 2k0a 2n - 1 I_._- I_-cos -_o _('÷ %)

0 o
2u - 1

_o(_')c°8
-00

_r(_'+ 0O)d n'

+ co 2k0a

n_= -_'-n-Sinn_ O_o(_')sinnrl'dn'+_ v (2).='£

oo

sin n n :_0_0(q' )sin n 7' d T}'

J -oo

4s0(e) 1_--i. v.(1)j _(n_^)si. n esi. n rl =

_, _ :1_ ° °°_o_[_:,,+:,_oU,Oro-N_o,:o
(4-2-21)
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where So(e)

CO

s(e)0= n_=

is given by (3-3-6) and can be rewritten as

e0

,vo oo o,cosoo
t_-e0

co e0

-2n_= v(1) sin(nS]K0nIn _0 (q')sinnq'dW' "

_-e0

(4-2-22)

In the next section, from the last three equations, we will find the solutions

for Z (rT)and E0(r/) .e

3. Approximate Solutions for E (rl) and E0(r_):e

We will apply Galerkin's method (Kantorovich, 1958)to find the approximate

solutions for _ (rl) and _0(rl) . Tb.ts method requires us to choose the forms
e

of E (rl)and E0(_) in advance and then to determine the arbitrary constante

for each field by substituting back in the integral equations. Since the elec_o-

m__gneticfieldsin the vicinityof a perfectly conducting right angle edge behave as

3
r (R. E. Collin, 1960) where r is the distance from the fieldpoint to the

edge. Thus _e(_) and _0(r/) may take the forms

E (rl)= , (4-3-i)

e _82 2'0 -q

and

A_°)
• (4-3-2)

_°(_) = _0o 2-v
2'

The remaining problem is to determine the constants A_ e) and A_ 0)
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We first substitute (4-3-1) and (4-3-2) in (4-2-20) and (4-2-21) •

multplying (4-2-20) with 1/(e0 2 - r72)1/3 and (4-2-21) with rl/(e02 -

#

2)Then

and integrating with respect to _ from -e 0 to eo, we have

[ J0(k0 a) (e) 2 2k0a ,p(e))2+
_ "_-[n =_1 _ n n_= 1 2k0a (_(e))2+ _ _ (2)( _(e121("(e)__,_0, +°°_ _o o_vo_o,jj_o

(D

_o _ _°_l'_°'°_°'°°'_'e' Vo

(4-3-3)

__=i 2k0a (p(0))2+ co 2k0a(.,(0),22n- 1 n n__"_ _n _ +
co (2)(_(0}21 A(00)

n_= Vn Qn"_

+ _rk0""-_ 2 = 0 , (4-3-4)

and

CO

s_,_Ao,e,_
n=0

v(1)cos(ne_onQ(n e) 2A(0)_ v(1)sidnS_^ Q(0)
en n - 0 _ n vn n

(4-3-5)

where

nTr
0_ cos -_- ndri

_(e____ ° °03 -_ ,
-00 _0 0 - t)2

(4-3-6)
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2n - 1

80 r}sin rl

I
n _2 2'-00 0 - n

d_ (4-3-7)

0o

Q(e) I c_s nndnn2

n --" --_"-"'"-_,

-e0 02 -

(4-3-8)

00f#

_(0) =_ _sinn_d_
_n j 3r_ 2 2'

-e0 V @0 -q

(4-3-9)

Integrals (4-3-6) through (4-3-9) axe discussed in A-7. It is shown in A-7 that

1 1
a

p(e) = 80 3 _f-_r(2)(_)6 Jl/6(n_)

i I

2 2

_(e) eO-3 _-_F(_) (___0) 6 j 1/6 (nSO)Qn ;

while

(4-3-10)

(0)- (e) _(0), (he) (002),P n /Pn and _ n /Q axe at least of O(e 0) and O respectively.

From (4-3-3) through (4-3-5), one can easily obtain that

(4-3-11)

and

_(e)

A(0) _, ___.V._n .
a A

(kob) I n_l(P(nO))2/(2n - 1)1 I2(1+_2)k0 b
.8

(4-3-12)
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where

..(e),2 80

A = J0(k0a)(_0 ) ---_-Jl(k0a)  <o: <'>°=,
CO

cO (Ecn v n(1)Jo(nll"O"_nl°(e)c°sne)2 1

+ _v n n Irko2ab k"2)kob I 5_n =u 2(1+ n (2/¢0) - 2 j "_n'rnJo (n¢ O)

(4-3-13)

In Eq. (4-3-11) and (4-3-12) we use the approximately equal sign because

in (4-3-13) we have neglected the terms of 0(008/3) and replaced X0n with

27rJ0(n_0) on account of (A-4-16) and for the convenienceco of computation.

One also notices from (4-3-10)that the series ___ (Q(ne))2/n in (4-3-13)

converges very slowly when 00 < < 1. Fortunately, under this condition, it

is found in A-8 that

co

n_l (Q(:))2/n ,., (e),2= ('_/0) ! n (2/00) + O.05053 00 2/3 . (4-3-14)
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SLOT VOLTAGES AND TERMINAL ADMITTANCE OF THE

WEDGE WAVEGUIDE FOR NARROW SLOTS

1. Introduction

In this chapter we will obtain explicitly the three important physical

quantities: the wedge slot voltage, the shell slot voltage and the terminal

admittance of the wedge waveguide when the angular width of the shell slot

and the wedge aperture are very small in comparison with unity. The voltages

of the wedge aperture and of the shell slot are defined, respectively, as

00

Vw : - S a_](rl)drl , (5-1-1)

-0
0

and

_0t_

: - _ bE(_)d¢V s D

J
-¢0

(5-I-2)

Since

I O0 ^a Eo(rl) drl =

-0 0

0

and

¢o

_¢0 b E0(¢) de

= 0 ,

6O
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consequently, we arrive at

00

= - _- a l_e(r]) dr]V w
_D

v-o 0

(5-1-3)

Vs = - _ bEe(_)d_ • (5-1-4)
J

-¢0

In deriving the explicit form of the terminal admittance, we neglect all

terms whose magnitude are of O(_02), or O (002), or less in comparisonwith

the magnitude of S_e)

2. Voltages of the Wedge Aperture and the Shell Slot

From (5-1-3), (5-1-4), (3-6-7) and (4-3-1), it is obvious that

Vw = V0 [Q_e)] 2/,/_ , (5-2-1)

and

O0

V 2 n n
S N

V
W 2£ 2_rk0aQ_ e) 2(l+k'2)kobln_o- CnTJo(n_ O)

(5-2-2)

where z_. is given by (4-3-13). It is seen from (4-3-13) that V is only
w

weakly dependent on the slot separation angle O. plasma sheath and the

coaxial spacing, except when J0(k0 a) is close to a zero. For this exception

one can show for 00<< 1 that

Vw --_ Vo/Jo(koa) (5-2-3)
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Thus for the radiation problem, one may even regard the narrow wedge

aperture as a constant voltage source. On the other hand the voltage of the

shell slot depends not only on Vw, but also on e, (k0b-k0a), and plasma sheath.

3. Terminal Admittance of the Wedge Waveguide When e0,__0 < <...__!1

The terminal admittance shown in (2-4-4) consists of three series. We

will consider these series in the next few paragraphs.

The first series is

J nTr (koa)

n=lC° J;---_O(koa) l e+e°11 - 2j
nT/"

0 - 0 0
20 0

_.(¢')cos nlr (_,_0+ 00)d ¢'
20 0 -,"

which can be separated into two series, i.e.,

J (k0a)

 OOoco ooo I 1 = 2j J'n7r (koa) e

-%

+

J 2n-1 _)'koa"

n=1J'2n-' 1 (k0a) E0(r1')sin_01

20"_ _r -00

since _, and q' are related by (4-2-1). Since 0 0 < < 1, similar to (4-2-16)

and (4-2-17), we employ the approximate f_rmulas

J nTr(k0a)

_00 0 koaN 0

J'n_- (koa)

ro
7r n
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J 2n- 1 (koa)

200 N 00 2koa

J'2n- 1 (k0a)

200

_r 2n-1

then using (4-3-1} and (4-3-2)_ we have

.o{,: ,: }II _ 2jk0a" -_- (A))2 (p))2/n+(A(0)) 2 2(P ))2/(2n-i)

As we indicate in A-7, the magnitude of p(e)/p(e) is at least of 0(80),
n n

therefore one may neglect the second term and arrive at

8

I 1 --_ j__(A(0))2
2k0a (_(e),2 (5-3-1)

The second series of (2-4-4) by change of variable (4-2-1) and Using (4-2-3)

can be _¥ritten in the form

1
2

co Jn(k0a)Nn(k0b) -Jn(k0b)Nn(k0 a)80

_o ""J_ob>_'o%"_-J_o")_%b'--iT

8o

I( f _e(n)cos n_ dq)2

%

e° 1+ (_ _(_)siun_d_)2 ,

-80

Ifone substitutes(4-3-I) and (4-3-2) in last equation, and neglects the terms of

9

O (80-), one has

12 _o_ _ _o_o_¢_o"__o"_._o"_¢,¢__J _" cn J_(k0b)Nn(k0a) -Ju(k0a)Nu(k0b) )

Using (4-I-4), we can reduce 12 in a more convenient form, i.e.,
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1
2 e0 v,2,,e,2,,2,o}j_--(A_e) e _n ) + 2k0a (Q(:

n=0 n n =

(5-3-2)

The lastseries of (2-4-4) is

13 eo2 = Ile_o_j. _o_, v¢" _¢_)co..¢d#
_ nnL O_Oo

_0

I )coshe' de'1;:.e(_'

-¢0

.4"-ie. o d"1(_) sin n_ d_ E0(_) sin n_'

e- 00 -_0

(5-3-3)

(i)
where v

n

and consider

odd function

is given by (4-2-18). Again ff we make use of (4-2-1) and (4-2-3)

_.(n) as the sum of the even function A(; ) / _ and the

A(0) -2_ 1/3
0 r//(00 r72) , it is obvious that

e + e0 E (_)cos n_d¢

0- e0

(e) _(e) .(o) _(o) .
= A0 Qn cos nO - A 0 _n stone (5-3-4)

and

.A
E (_)sin n_ de •(0) _(0) .(e) _ (e)sin ne (5-3-5)

= A0 _n cos ne+A 0 Qn

From (3-6-7) and (3-6-8), respectively,

I_0 Ee(_) c°s n_d_

-¢0

(e) T
4 s o °o(n¢o)

N

k0b 187r2(i+_2)k0b In(2/_0) - n___ CnVnX0n2]

(5-3-6)
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and

_O EO(_) sin n¢ d_

-¢0

a(10) _0

= - J1 (n_0) " (5-3-7)
(1 +_2) (k0b)2

Upon substituting (5-3-4) through (5-3-7) in (5-3-3) and iieglectiag the terms of

O (_02), O (002), and O (00_ 0) .

ZevC° (1)cos(n0J (n01)Q(e)
nn 0 "0 n200 . (e)_(e)A0 _0 n=0

i3 a¢ -j _ zrk0 a 2 N (5-3-8)

2(l+_2)(k0b)_n _00- n=02 k0 b
2

enVnJ 0 (n_0)

where S0V)_ is given by (4-3-5).

equation, one obtains

Therefore, inserting (4-3-5) in the last

O0 2
2_r(A_e)) e v (1)J^(n_^)Q(e)os n

= n n u u n

7r _k0a [2 N )I7r2kob (l+_'2)kob/n_o-n=o_en'rnJ:(n_o

(5-3-9)

Now we add (5-3-I), (5-3-21 and (5-3-9) together and obtain

y(a) --_ j

0
0 1

(Q(0))2

4

+_ v (2)(Q(e)) 2 _ r2k_ ab (n=/_0_nv(nl)J0(n_0)c°s(n0)Q(ne_2 } .

n---_}_ n n n 2(1 + _.2)k0b, n _0 _ n_=_0¢n Vn j: (n,0)

(5-3-10)
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Thus substituting(5-3-10) In (2-4-5), we obtain an explicitformula for the

terminal admittance Y(a) of the wedge waveguide. For the convenience in

presenting data, in Eq. (2-4-5), we choose L = a and attainthe resulting form

of

((e) _.(e),2.0 /"+Y(a)_j_ 2k0 _ Qn I_0 J in

+
(2)._(e).2 a

_nvn l_n } -

I 2 D0 (1)T (n_)(-(e)'Q (e))c°sn0]_--ko0a CnVn "0 ttl0 _n / 0

N

2(1+ _ 2)k0b In_ 2- _n'rJ0 (n_i0)
r0 n=0

The last term inside the brace can be written as

2

1
(5-3-II)

V 2 2 _', * jl(n_o )
_ ab • l+(_'2)*]k0bln _0 n_= n n

where the voltage ratio Vs/_ w is given by (5-2-2). In view of (3-1-6), we

further introduce the notations

(3)
v 0

J0(k0b)N_)(k0a)- J_)(k0a)N0(k0b)

J_}(kob)N_)(k Oa) - J_)(koa)N_)(kob)

(3) k0b Jn+ 1(k0b)N'n(k0a)-Jn(k0a)Nn+ l(k0b)

n n J'(k0b)N'(k0a)-J'(k0a)N'(k0b)nn n n ; n_> 1
(5-3- 12)
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and

' =fro_'0

1,1-, _- l_lb)Nn(_e) -Jn(k le)N - l(klb

7r,=E2"'0- .L j

H (2)" c) r

(F)L-

klC)Nn(klb) - J nO_ll_ H(2)(koC ) n(k le)Nn(k lb) - Jn_klb)Nn(

(5-3-13)

Then "rA and -r become
o n

H_2)(k0 c) (3)

o = '_ . (2)_, e - v ,
u0 '"0 ) 0

H_2)(k0e) v (3)
'T = 7rv
n n (2)'

(k0c) n

, n_ 1 . (5-3-14)

Thus if G and B respectively, denote the terminal conductance and suscep-

tance, then from (5-3-11) through (5-3-14) one arrives at

- _ .Ira %(_,)._ n o 2
H(1)(k c" J0(n_)- 2(_2)*k0b_n(2/_)0) '

n 0 }

(5-3- 15)
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0 a tea /"_0 j /n+n=l,_n /'¢0 I /nj

+±
n=O

(2)( (e)- (e))2
cn v n Qn /Q0 -

2
N 1

- In (2/¢o), X_I-z b
b iv_.___o -j

H_l)(k0c)

Cn (_')* (1)'
n Hn (k0c)

J2 (he0) - 2 (k--2)* k0b I n (2/¢0)1 }

(5-3-16)

where Im and Re are the abreviations of "real part" and "imaginary part"

respectively. Since (5-3-15)and (5-3-16) are so complicated that in general

one can hardly obtain any information before actually performing the

numerical computations. However, in a certain special cases, some properties

of the conductance G and susceptance B can be read from the expressions.

Case a: In this case, we assume no plasma sheath, i.e. we let c --_ b and

--_ 1. From (2-3-26), it can be shown that 7r ----> 1 . Since
n

H(1)(k0b) 2
Im ( ) -

._}_ob_ _o_

then (5-3-15) is easily reduced to a form

_

IVs 12 1a

_wl_b _0

N

n=O

(5-3-17)



. 69

If we divide (5-3-17) by (A-9-4), then we obtainaformula of similar form as

Eq. (38) in one of Olte's recent papers (1965). This coincidence is a physical

consequence because from the circuit point of view, ff V is the terminal

voltage, G is input conductance then it is well known that the power P = GV 2 .

It is interesting to note that as _0--> 0, G decreases as -1/ln_0 and B

*^-_ ,,, n_ C._proQQ_nn independent of {},, and 0,,
u

B__ 0 . (e),_(e),2, . (e),_(e),2,
(Pn /_0 ) /n+ (Qn /_0 ? /n

Ir n:l n=l

1 n_ 0 r (2)(_,(e),--(e),21+ 2k0---'-a = =nVn _n /_0 _ " (5-3-18)

The susceptance given by last equation is the terminal susceptance of the wedge

waveguide for the case of no shell slot, i.e. a continuous shell shrouds the

cylindrical antenna.

Case b: In the present case, we assume that I _:1 < 1.0, k0b-k0a<<k0a, k0b

and k0a= m, a positive integer. In this report, we limit ourselves to k0a < 5.

co (2)((e) _(e),2 co (1 (e) (e)
Since the series _ CnV n Qn /_tO ; and _nVn _n(n_oXQn /Qo )cos nO

n=0 n=0

(the numerator of Vs/V w, (5-2-2)) converge absolutely, we may truncate them

N
(3) 2

at Mth term and then these truncated series as well as the _nv--n J0(n_}0)
n-'0

will be proved to be dominated by their respective n_h terms.

If kob -koa < < koa , kob, it is found that

Jn - 1(k0a)Nn(k0b) - J'n(k0b) Nn - 1(k0b)

n 2

k0a _rk0a
+ ko(b-a)[Jn-l(koa)Nn(koa)- Jn(ko a) Nn_I (koa)] + ....
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Jn+ 1(k0b) Nn (k0a)-Jn(k0a)Nn + 1(k0b)

n 2

k0b 7rk0b
k0(b-a) [Jn+l (k0b)N'n(k0b)- Jn (k0b)Nn+l (k0b)] + "

J'n(k0b)N_(k0a)-Jn (k0a)N'n(k0b)

2k0(b-a) r( n 2 1]+ k02(b-a)2
rk0a IV )- 2

[J_' (k0a)Nn(k0a) - Jn(k0a)Nn" (k0a)1

+

where n > 1. Thus ff one made use of the above results, it is clear that
m

(e)

n_=M - (2),_,(e)/,_(e),2_ 4 2 tF_ _e) + ]}tnVn '_tn /_0 ' k_(b a)2" 7rk0----'a ( )20[k0b_k0 a
= - Q0

M
v(1)j (e) (e)

n___ n n 0 (n_0)(Qn /Q0 )c°s n0"
E

2
k 0 (b - a) 2

{ Jo( m_o)Q_e)e os mO

Qo

and

N

ennv(3)J02(n#o)
n=O

4

k:(b - a) 2
2 /J_ (m#o) }rk0b[ _mm _ O(k0b-k0a)

(5-3-19)

(5-3-20)

(5-3-21)

where

Fm = J'"m (k0a)Nm(k0a) - Jm(k0 a) N'"(k0a)m (5-3-22)
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If one substitutes

one obtains

(5-3-19) through (5-3-22) in (5-3-16) and (5-2-2),

"2"r_00 k02(b- a)2{TrFmk0a (e) k:(b _a)2 n=l 2k0a (e_e)_

B" 1 0 4 2 (Qm)2 co
+ 4 _ n ( )2

Q0 Q0

k 2(b- a) 2 ]+ 0 4 2k0aln(2/¢0)

+
a IvV-_Swl2k:(b-a)2 [n___-e

Hn(1)(k0c) j: (riCO)

Hn(1)t(k0c )

and

-2 (_2)*ko btn (2/¢0)]}

koa = m (5-3-23)

V
S N 2

V _rk0a 2w 2Jo(m¢o)

_rk0bF m

+

_0(m_0)Qm(e) cos me_Qo_)Fm_

L 0 0 n=0nn n_0

k0a = m . (5-3-24)

Since Ikl < 1 and the angular width of the wedge aperture and shell slot in

practical case are small but finite, Eqs. (5-3-23) and (5-3-24) can be further

reduced to
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V
S _,_

V
W

bQ(e) cosm0

a Q0(e) J0(m_0 )
+ (_ko(b-a)] , koa = m ,

(5-3-25)

S _'_
4

k0a F m 'e']2IQm 1 b

Q_e)k0(b-a) a
cos 2 m0 + 0 [k0(b- a)]}

koa = m .

If we substitute (5-3-25) in (5-3-15), we obtain

(5-3-26)

%(e)G 1 0 b( )2 2- -- COS mO

a Q_e )Jo(m}o )

"I
m 2 }J0 (n¢o)- 2_2)*k0bln(2/_0

+ O[k0(b-a) ] , k0a= m •
(5-3-27)

It is interesting to note that in the present case, both G and B depends

strongly on k0a, k0(b-a) and 0 but only G depends on the plasma sheath

and shell slot width 2¢0.

Case C: If we keep the radii k0a and k0b constant, _0 and 00 small

but finite, 0=0, v/_0 = 0 and _p/_ >> 1, then
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j_/( ___pp2 ' cop_: = ) -1 -_j%--

and

H (2)(k_,c) co 9 knb
[1 U .n

_r' "" (_)- "
n Hn(2P(k0o) n

_ pco H_2)(k0c)c°s k0(c-b-'-EH(2)(k-c)sincon U --Pkco0(c-b

co COP-_-H n(2)'c(k0 ) cos _ k0(c- b)]+ H_2)(k0c)sin _-_Pk0(c -b I

(5-3-28)

Therefore

Im

2co

P k0(c -b) N 22 co Jo (n¢o)
(5-3-29)

Re
In_--000 " H_1)(k0c) )I%(_n )' 2(n¢oH(1)'k c) J0

n (0

co N kob 2(n_o)__n_o_nJo2(n_o) .=-2 (-_)2 n=_ ----_-J0 =
(5-3-30)
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On the right hand-side of (5-3-30), one notes that from (A-8-12), the first

tO

term is approximately equal to -2(-P)2k0bin(2/_ 0) . Hence, upon employing

(5-3-29) and(5-3-30), [Vs/Vwl 2, G and B respectively become

2 ' >2_-- (Cs/Ct)2

P

, (5-3-31)

GO

C - 2

s rk0a n_=
c v(1)((e). (e)) Jo(nOo)COSnOn n Qn /QO

(5-3-32)

Ct CnJ: (n¢o) (5-3-33)

7r Vp 0
_1(Cs)2(___)2

ct _p

kOa_lO I_" (p(e). (e))2.n
B'_ _ -- 1_.J. n /Q0 /

_r _P0 (n:l

_. (e)_(e),2,+ (Qn /_0 I /n
n=l

tO

-2 Pko(C -b)
e

(5-3-34)

oO

+ 1 _ (2). (e). (e).2

_n=_nVn (Qn /Q0 )

- (C:/2 k0b ) (5-3-35)

N

_-_¢ v(3)j 2 }
P C t

Equation (5-3-34) and (5-3-35) show that for an overdense plasma sheath,

if we ignore the collision effects, the terminal conductance G decreases with a

factor (tO/tOp)2 e-2k0(c -b)Wp/tO" and the terminal susceptance B approaches

to the case of no shell slot as shown in (5-3-18).
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EQUIVALENT CIRCUIT FORA COAXIAL ANTENNA
WITH A PLASMASHEATH

1. introduction:

In chapter II, we derived the general stationary form for the terminal

admittance of the wedge waveguide; Upon using the results from chapter III

and chapter IV for e 0 < < 1 we finally arrived at an explicit formula for this

admittance in chapter V. It is clear that this admittance is a function of the

following factors: k0a , k0b , k0c , 0, C0p/_, v/co, 00, and _0" If one can

find some explicit expressions to indicate the individual role of each of the

above factors in Y(a), then one knows all details of the coaxial antenna.

Unfortunately, this is practically impossible. However, it is also valuable

to know the individual influence of the wedge region, the coaxial region,

plasma sheath and free space on Y(a), respectively. If we refer to the

normalized stationary form of the terminal admittance y (a), (2-4-4), it is

found that one can hardly identify the individual influence of each of the above

four regions on y(a). Thus we turn to seek some other way to formulate the

normalized terminal admittance of the wedge waveguide so that the effects of

the above four regions can be discussed. In section 2 of this chapter, we

furnish a new formulation of y(a) which allows one to propose an equivalent

circuit for the antenna. In section 3, we also discuss the physical significance

of each circuit component of the equivalent circuit. However, the new

formulation of y(a) is not stationary with respect to the functional variation

of the wedge aperture field and therefore, as long as the exact _uLu_,,,,--l"-*:^_ for ÷_o.._

wedge aperture field is not found, the stationary formulation of y (a), (2-4-4),

is still important in producing the numerical results.

75
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J An Equivalent Circuit of the Coaxial Antenna:

Upon multiplying (2-4-3) with 2--_0/_ 0

0-0 0 to 0+00, we have

E* (0) dO and integrating from

200 y(a) o+ 0 0

O- 00

2

1(0)cos_0(0-o+Oo)d¢
-- \_0o /_0 jO-Oo

2

+ j % n___0 J n(k0a)Nn(k0b)- Jn(k0b)Nn(k0a)-_- Cn J_(k0b)N_(k0a) - Jn(k0a)N_k0b)
0+00d0_;":(0) ._ E(0')c°s n(0-_ d0'

- 00 -0 - 00

o+oo Oo }
(6-2-1)

Following the same procedures as in A-l, one may find that the above equation

is not stationary. From the definition (2-4-5) of Y(a), taking L = a and

by virtue of integral Eq. (2-3-31), we write (6-2-1) in the form

Y(a) =JB + J(Bcl - t2Bc2)-
L2y (6-2-2)

w Pf
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where

B
W

"o i_o J

+oo

A n_E(_)cos (¢_e+e0)d¢

2

o+eo ^, _e+%
1.._0-_ J _^a)Ni_^b>-J'_^b)N_^a) I d_E (,)_ _("')cos n(_-,i)d,'

o' 2-1%__. o n'J_k0b)Nn_0a)-J_k0a)N_(_b )

(6-2-4)

l ¢° ;:i¢)I'° (¢')eos n(¢-¢')d¢'deE E

_ _.__o_@_%(_-_._(_o_% -_o
n_-- _ n_ n_ )- _a)Nn_k0b) i_si_ •

Ypf
,. H_l)(k0c)

n° ._,,_0o, I_1_

(6-2-5)

l'°E_"it_) E(¢')co_n (¢-¢')d¢'

%

(6-2-6)

T
W o+oo: _ (¢)de

8 -80

(6-2-7)
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_0P
w =_ E (¢)d_

8 •
.)
-¢o

(6-2-8)

and

(6-2-9)

Equation (6-2-2) suggests an equivalent terminal circuit of the wedge

transmission line as shown in Fig. 6-1.

 m°V0(

I

I 1:_

.
)Yo(r)=Yo(a>; i JBw JBc_ JBc2

I Ideal Transformer
Wedge Transmissiola

Line I

Ypf

FIG. 6-1: EQUIVALENT CIRCUIT FOR THE COAXIAL ANTENNA

It is seen from (6-2-3) through (6-2-9) that Bw, Bcl, Bc2 are

real quantities while Yp f is a complex quantity, therefore the first three

circuit components are susceptances and last one is an admittance. One may

also note that the only 0 dependent circuit component is the transformer turn
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ratio I. In the next section° we will discuss the physical significance of

these circuit components in detail.

3. Physical Significance of the Circuit Compoueuts:

In (6-2-3), we note that B depends only on k0a o 00 and _ (_), the

w E h E_ h and H h representwedge aperture field. Furthermore, if we let r" z

the electric field and magnetic .... In the .... _ .... .,4^_ _;,_,,_ +h_ T_.M

mode field,then the integral

aI°+°°[,"r°I 102 T_ 2 dz 0(E Ehr _'"I o 00o
h E_*) - h rd¢

in view of Eqs. (2-2-1) through (2-2-3)° can be reduced to a form exactly

the same as shown on the right hand-side of (6-2-3) which defines the sus-

ceptance B . Therefore, we may regard B as the susceptance due to
W W

the higher order mode fields in the wedge region. For narrow angular width

of the wedge or small k0a° Bw can be reduced to

Bw = _[Cw + O(k0a00 )2] (6-3-1)

where

e0a _ 1Cw-- --
7r n= 1

Is+s° n_ 2_(_)cos2--_'0 (_-0+00)d_ T w

o-o0

(6-3-2)

Itis seen from (6-3-i) thatthe dominant part in square bracket is the capacitor

C which from (6-3°2), depends upon the radius of the cylinder and the
w

angular width of the wedge aperture.
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In Eq. (6- 2-4), if we make use of (4-2-19), we may separate the right

hand-side into two series and obtain

Of)BI=WCcl + 1 0 _c v (2)
n__z___ nil

where

c a do

- 0 n_l 1Ccl _ __

I°+°o Ii+°ode :_*(_t) E(¢)cos n (¢- ¢') d_i'

00 o 00

°÷°o o i°÷°ode_;"(¢) _ (¢)cosn(¢- ¢')d¢'

o-oo -o-oo

(6-3-3)

(6-3-4)

When the angular width of the wedge is very small, we may employ the wedge

aperture field (4-3-1) and then because of (A-8-12), we have

_0 a
(6-3-5),,,.,. __ ln(2/O0)Ccl _

The second term of (6-3-3), because of v (2), (4-2-19), converges

rapidly. Ccl may be considered as the capacitance due to the fringe fields

of the wedge aperture. The same fringe capacitance can be found when the

circular shell and plasma sheath are not present. Schelkunoff (1952) in deriving

the terminal admittance of the biconical antenna also found a capacitance which

has a logarithmic singularity as the cone angle 0 --_ _-
2"

The next circuit component to be discussed is Bc2. Since
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Jn(k0b)Nn(k0a) -Jn(k0a)Nn(k0b) k0b

Jn(k0b)Nn(k0 a) -Jn(k0a)Nn(k0 b)

(3)
- _+v , n>l

n n --

where v (3) is given by (5-3-12), we may write (6-2-5) in a form
n

Bc 2 =COCc2+ b 1 a e_N mx-_e __ v (3)
a 2--_ e:n n

v'O n=U

where

b _0b_ 1
Cc2- a _- n=Z_"

Ts[ 2

(6-3- 6)

¢0d¢E*(¢) l ¢0E (¢') cos n(¢- ¢') de'

-¢0 -¢0
2 (6-3-7)

Similar to Ccl, we regard Cc2 as the capacitance due to the fringing

field of the shell slot in the coaxial region. For narrow shell slot, upon

substituting (3-6-7) in (6-3-7) and making use of (A-8-12), we obtain

b e0b

"" In (2/¢ o)Cc2 a _r

Hence, as the angular width of the shell slot approaches zero, the capa-

citance Cc2 also has a logarithmic singularity. The series in (6-3-6) converges

rapi(fiyand for narrow shell s!ot 2_0 _ itis weakly dependent on ¢0"

Since in the plasma sheath, there is also a fringe fieldneighboring to the

shell slot, we expect thatthisfringe fieldwill contribute to a capacitance•

To investigatethe nature of this capacitance, we turn our attentionto Y
pf"
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k-2klb

(6-2-6). Comparing (5-3-14) with (3-1-6), we observe that _ = lr'
11 n !1

for n _ 0 where _r'n is given by (5-3-13). Therefore Ypf can be reduced to

t_e0a * b I 0 en(Ir.)*Y_-J-w -°_2) Aft - J _ :(2),_ :
tin _K0Cl

_¢0d#E*(¢)

¢o

I E(_) cos n(¢- ¢')d_'

-¢o -#o
2

(6-3- 8 )

and

= (b.2_
Afr a'

n=l

_0 d __0_JZ*(¢) Z (¢) cos n(_ - (J') d_J'

-#o -#o

We see from (6-3- 9 )that for 2_0 < < 1, we find

(6-3- 9 )

Af r _ (b)21n(_00) .
(6-3-10)

In (6-3-8), we may regard the first term on the right side as the admittance

associated with shell slot fringe field in the plasma sheath. From the

defining equation of the dielectric constant k of the plasma, (2-2-14), we can

show that the above fringe admittance is composed of three parallel branches

and can be written as

c0a
j "_ (_2), Af r =j_(Cc3 1 )+

U2Lc3 Gc3

(6-3-11)
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where

c0a

Cc3 - _r Afr ' (6-3-12)

P0 a 7r _2 1 + (v -/to)2

Lr3- _r (k_) (Wp/_)2"_fr ' (6-3-13)

Gc3- v_0a (_p/tO)2Afr

7r 1 + (v/w) 2 " (6-3-14)

Cc3 is a capacitance due to fringing fields, Lc3 is an inductance

due to the plasma, and Gc3 is a conductance which accounts for the power

dissipatedby the shell slot fringe field in the plasma sheath. As _0----> 0, it

is seen from (6-3-12) through (6-3-14) that Cc3 and Gc3 have logarithmic

singularity while Lc3 approaches zero. Since Aft is only weakly dependent

on the plasma sheath, thus Cc3 is also weakly dependent on the plasma constants.

is inversely proportional to (_u/to)2 and Gc3 increases as (_u/w) 2Lc3 Thus

increasing the plasma density tends to short out the shell slot. The real part of

the second term on the right hand-side of (6-3- 8 ) may be associated with the

power radiated into the free space and the power loss in the plasma sheath by other

than the fringe field of the slot. The imaginary part of this term may be related

to the stored energy in the plasma sheath and the free space with the slot fringe

field excluded. To investigate the connections between Ypf and the stored

energies, the power loss in the plasma sheath, and the power radiated into the free

space, it is more convenient to start with (6-2-6). From (A-10-9), it can be

easily shown that

2P IH + j4 (w IH - w E ) + 2Pr + j4_( v _ WEIV) =b 21T s 2 Yf . (6-3-15)
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where

p

r

pIII =

time averaged power radiated into the free space

time averaged power loss in the plasma sheath

W H = time averaged energy stored in the magnetic field

W E = time averaged energy stored in the electric field

and the superscripts HI and IV denote the plasma sheath and the free space,

respectively. If we define the radiation conductance G and plasma con-r

ductance G , respectively, as
P

2P
r

G = 2 2 " (6-3-16)

r b iTs I

2 pHI

- b 2 2 " (6-3- 17)
Gp ITsl

then

G + G = Re Y (6-3-18)
r p pf "

The imaginary part of Yuf' from (6-3-15) is a susceptance which accounts for

the difference of the time averaged stored energies in the magnetic field and

electric field exterior to the conducting shell. It can be visualized that

to [Cc3- 1/(_02Lc3) 1 and Gc3 are a part of the susceptanceaudconductance represented by

Im PYf and G respectively. In (A-10-10) we derived the expression for P .p r

From this equation and (6-3-16), when _ > > w, one can show that G
p r
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-Xpko(c-b)
decreases as the factor e if Xpko(C -b) > > 1 where

x - P + I+4(
P _ 2

The coaxial region not only behaves as a reactive element, but also couples

the two slots. In the equivalent circuit, we indicate this coupling effect by a

transformer of turn ratio t as defined in (6-2-9). Since these two slots are

separated by an angle 0, i will be a circuit constant in Fig. 6-1 that

depends upon the separation angle 0. Apparently, t also depends on the

radii k0a and k0b. However, since the shell slot opens into the plasma

sheath, _ is also modified by the plasma constants. To have an idea as to

how i depends upon these factors, the reader may refer to (5-2-2) in

which the angular width of wedge aperture and shell slot are assumed very

narrow.
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NUMERICAL RESULTS AND CONCLUSIONS

1. Introduction:

In this chapter, we present the numerical results based on computations

from (5-3-11). From this equation we note that Y(a) is a function of k0a,

k0b , k0c , 0, _p/_0 and v/w; thus in presenting data, we successively

choose 8, k0(b-a), k0(c-b), k0a and _p/L0 as the abscissas. The com-

putatioms were performed on a digital computer 7090 for 00 and _0 equal

to 0.03 radians. Since the method of solution of the integral Eqs. (2-3-31)

and (2-3-32) given in chapter III and chapter IV, respectively, is primarily

a low frequency approximation , we limit k0a in the computations to the

interval 0.1 <_ k0a < 4.3. In (5-3-11), we sum the series

e),_(e),2, co ,_(e),_.(e),2,
t_n /_0 j /n to 250 terms and the series _n /_0 j /n by the

n=l n=l

method shown in A-8. The factor v(I)enters into the series defining the
n

numerator of the last term inside the brace of (5-3-11) ; this series we sum to

M terms. The number M is determined by two conditions: a) in the last
I __ Iter .,re oe o,t e eoroa e  o oto ca,, . ,
I "- !

(2) v(Z)v , T decrease faster than as n becomes large , we sum the
n n n

_.c (e) _(e),2
series n=_ nv(2)'n (Qn /ut0 j to Mth term and for the finite sum

N

n___ EnTn j2 =
(n_0)_- we set N M.

86
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In the following sections, we first present and discuss the numerical

results, then we summarize what we have done in this report. Finally, we

make some brief conclusions based on the theoretical discussions and numerical

results.

2. Numerical Results:

iu Flg.", -_' _,'-_ .,,._.---_(h),_ _,o.......pint the normalized conductance G/G'

and the normalized susceptance B/B' as a function of B for the no plasma

sheath case. In this figure, the radii k0a and k0b are the parameters;

G' and B', respectively, are the terminal conductance and susceptance

of the wedge waveguide without the conducting shell and plasma sheath.

Their formulas are (A-9-4) and (A-9-5}, respectively. G' and B'

depend only upon the radius k0a and the wedge width 2e 0 . In

Fig. 7-1 (a} and (b), four different values of the radius k0a are used. We

tabulate the corresponding values of G' and B v in Table VII-1 for reference.

k0 a J G' mhos I B" rnhos

0.2 1.33 x 10 -4 8.72 x 10 -4

i. 0 I. 04 x 10 -3 3.59 x 10 -3

1.8 2.08 x 10 -3 5.69 x lO -3

4.3 5.35x 10 -3 i0.5 xlO -3

TABLE VII-l: TERMINAL CONDUCTANCE AND SUSCEPTANCE

WITHOUT CONDUCTING SHELL. WEDGE WIDTH

0.06 RADIANS.

,2

In Fig_iT-2(a) and (b), we plot the terminal conductance and the ter-

minal susceptance versus separation angle e, with _u/w as the parameter

for the collision-free plasma sheath. The radii k0a, k0b, and k0c are

kept at 1.0, 1.1, and 1.2, respectively. In Fig. 7-3 (a} and (b}, we repeat

Fig. 7-2, except u/w is used as the parameter and Wp/_ = 1.5. It is seen
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(koa=4.3; kob =4.55)

10

,n

i(li O;_L"1) I

1 °°_ i

_,,,_ (1.8;2.0) "_. ft_f
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e e

-,°- __..
oe

(b)

I-25i I , I , I , I , I , I
O° 30 ° 60 ° 90 ° 120 ° 150 ° 180 °

8---_

FIG. 7-1: (a) NORMALIZED CONDUCTANCE AND (b) SUSCEPTANCE VERSUS

e WITH NO PLASMA SHEATH AND (k0a; k0b ) AS THE PARAMETER
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from the last three figures that a) conductance versus e curve and sus-

ceptance versus e curve for the case k0a = 1.0 and k0b = 1.1 are neatly

checked with Eqs. (5-3-26) and (5-3-27) except Wp/W = 5; b) when v/_

increases, the conductance also increases while the susceptauce is practically

not affected.

In Fig. 7-4 (a) and (b) we plot the terminal conductance and the terminal

susceptance against the width of coaxial region, k0(b - a), for the no plasma

sheath case, the separation angle e as the parameter, and k0a = 1.0. Oue

may observe that for small k0(b - a), when e = 0 ° and 180 ° the conductance

and the susceptance are approximately equal to G' and B' for k0a = 1.0;

when e = 90 °, G becomes very small while B becomes a large inductive

susceptance. If we refer back to (5-3-26) and (5-3-27), a similar result

can be observed. For a large value of k0(b -a), the conductance is small

while the susceptance approaches a positive constant, i.e., a capacitive

susceptance. Furthermore, one may note that the conductance versus

k0(b - a) curves shown in Fig. 7-4 (a) are maximum when k0 (b - a) --'_0.4.

In Fig. 7-5(a) and (b), we plot G and B versus the plasma sheath

thickness k0(b-c) with _p/_ as the parameter and k0a = 1.0, k0b = 1.1,

e = 0 ° , v/_ = 0. In Fig. 7-6(a) and (b), we repeat the last figure except

for v/to = 0.1. From the last two figures one may observe that: a) When

_p/W = 0.5, the conductance and the susceptance are weakly dependent on

the sheath thickness for the cases v/to = 0 and v/_ = 0.1. GaleJs (1964) in

a paper on the admittance of a slot in a perfectly conducting plate covered with

a plasma sheath showed that the slot conductance and susceptance are practically

independent of the thickness of the plasma sheath when _p/_ < 1. His numerical

results are not accuraLe for a thin o._,_._-^n+_,b) _,rhen. t._/t.)_ = 1.5 and the sheath

thickness k0(c -b) exceeds 1.5, further increasing the sheath thickness will

decrease the conductance exponentially for v/_ = 0, but makes it approach a

constant for v/_ = 0.1. For k0(c -b) > 1.5 the susceptance is essentially

independent of k0(c -b) and the collision frequency, c) When k0(c -b)
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approaches zero, the conductance and the susceptance for all cases approach

respectively to 1.18 x 10 -3 mhos and 6.26 x 10 -3 mhos, the magnitude of the

terminal conductance and the terminal susceptance for the case without plasma

sheath. We did not plot the case Wp/_ = 1.0, u/w = 0 because when the plasma

frequency is equal to the radio frequency, the effect of the collision can not be

In Fig. 7-7 (a) and (b), we keep k0b/k0a = 1.i and have no plasma

sheath. G and B are plotted against k0a with 0 as the parameter. The

primary purpose of thisfigure is to show the effectof the radio frequency on

G and B for a constant cylinder radius a. We note that as k0a increases,

the conductance peaks at k0a _ 0.43, 1.3, 2.2, 3.13, etc. The susceptance

peaks almost at the same values of k0a as G.

In Fig. 7-8(a) and (b),we plot G and B as function of _p/W with

u/_ as the parameter . The values of k0a, k0b and k0c are chosen as

i, i.1o and 1.3, respectively. One notes that for large values of Wp/CO,

G decreases exponentially with further increasing of Wp/a) when u/_o=0

and approaches to a constant value when u/_ _ 0. The susceptance, on the

other hand, for large _p/W, is approximately a straight linewith a negative

slope. The effectof u/_ is to shiftthe straight lineupward. The suscep-

tance in this region of _p/C0 is inductive. In Fig. 7-8 (a)we plotted G versus

_p/C0 for the cases u/w=0, 0.1, and 0.5 and in Fig. 7-8(b), B versus

_p/W for the same parameters. Notice that u/w =0, and 0. i curves for B

are not distinguishable on the graph.

3. Conclusion:

The antennaproblem encountered in this report is basically a boundary

value problem. To attack such a problem, we firstexpress the electro-

magnetic fields in the wedge region, the coaxial region, the plasma sheath

and the free space in a series whose coefficientsare in terms of the _-

directed electric field, _ (_) and E (_), in the wedge aperture and the
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shell slot, respectively. Then upon applying the boundary conditions, we

formulate two coupled integral equations in which _ (_) and E(_) are the

unknown functions. Both integral equations are of the first kind of the

Fredholm type if one of the slots fields is assumed known. Only in one°

however, the magnetic current source is present. This we will call the

inhomogeneous equation; the other one -- the homogeneous equation, for the

purpose of present discussion. Thus the boundary value problem is reduced to

the problem of solving these two coupled integral equations. However, for

practical purposes, we may regard the wedge region as a transmission line

loaded at the cylinder surface by a terminal admittance. The knowledge of

the terminal admittance is fundamentally importas_ in studying the behavior of

an antenna. For this purpose, from the in_homogeneous integral equation,

we formulated two different expressions for the terminal admittance. On

the assumption that the solution of the homogeneous integral equation

mentioned above is obtainable, one of the above two expressions for the

terminal admittance is proved to be stationary with respect to the

functional variation of _ (¢). An analytical solution of the homogeneous

integral equation in a series form has been found for the low frequency

region. This solution depends on the radii k0a, k0b, k0c ; _p/_O v/t_,

and the angular width of the shell slot 2_ 0 . For narrow shell slot, the

series which represents the solution converges rapidly. The other form

of the terminal admittance of the wedge waveguide is not found stationary

with respect to the functioml variation of _ (_). However, this new form of

the terminal admittance gives us some physical insight about the antenna via

an equivalent circuit.

When the angular width of the wedge aperture and shell slot are very

narrow, from the stationary form of the terminal admittance, we obtained

an explicit expression for the terminal admittance. Based on this explicit

form, in some special cases, we were able to discuss the behavior of the

terminal admittance theoretically. From the above discussions and the
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numerical results presented in the preceeding section of this chapter we

may briefly conclude:

a) The slotted circular shell functions as a tuning element and a

matching transformer. Therefore a suitable choice of the width of the

coaxial region and the slot separation angle 0 will result in more power

radiated iuLo the free space, than by *_e wedge cylinder alone.

b) The frequency response of the conductance and suseeptance of

the coaxial antenna peak repeatedly at different frequencies, with narrow

bandwidth in comparison with the wedge cylinder.

c) When Wp/W < 1, the plasma sheath thickness k0(c -b) has little

effect on the conductance and susceptance. When wu/_ > 1, and plasma

collisions are neglected, for large sheath thickness, the conductance

decreases exponentially while the susceptance approaches to a constant

which depends on the ratio _u/w. If the collisions are not negligible, we

observe that the behavior of the susceptance is not changed but the con-

ductance approaches to a constant depending upon u/w.

d) For a fixed operating frequency and plasma sheath thickness,

when Up/W< 1, the collision term u/w has little effect on the susceptance,

but increases the magnitude of the conductance. For large _u/u, further

increasing the plasma density will have the same effect on the conductance

as the increasing of plasma sheath thickness, but will make the terminal

susceptance decreases continuously to the case of unslotted conducting

shell.



APPENDIX

A-I

PROOF OF THE STATIONARY PROPERTY OF y(a)

To start the proof we take the first variation of Eq. (2-4-4); the

result is

e+eo 2 e+°o o+_

5y(a)[l 0 E(,)d,] +2y(a)_0 5E(,)d, l0 _:(,')d,'
-oo -oo -oo

J mr (k0a)

4,°°V__0
_J

Jmr (k0a) 88+ 806 _+ 80 nTr ,,_. ,., e 'd"i'

lllf

_:(¢)c°s2-_0(¢- O+ 00)d_ _:(_')c°s2--_O'_-_- O' w

-oo -oo

200 o0 Jn(k0a)N_k0b) - J_k0b)N(k0a) _i+ 00 _0+00+ J "7 n--_ en Jn(kob)Nn(ko a)- Jn(kob)Nn(ko h) d_6 _(_) _(,_')cosn(_-_') d_'

-eo -e-eo

200 2 _ v(1)

lr 7rk0a n=_en n

e+oo ¢o

_i -00d'_' _i_ E(¢')cOsn(' - '') d¢'

+

+°o ¢o

- O d' 5 _'(¢) l -¢: (¢') cos n(¢ - ¢') d¢']
0

From integral Eq. (2-3-31) one can show that

(A-1-1)

i00
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O vfO i,od¢_(¢) 6 E (¢')cosn(¢- ¢')d¢'

" .--_"dn n -0-% -¢o

k0a

00 co O+ 00

-oo

¢0

a_6 J:,Upl E_ W /_...,o..,.,_y,- y, ,,.,,_,

_'-¢o

(_A-1-2)

Upon applying (A-I-2) to (A-I-I) and moving the second term on the lefthand

side of (A-1-1) to the right hand side itis seen from (2-4-3) that the right

hand side is zero, i.e.

6 y(a) = 0 .

One thus concludes that a first variation in the aperture field of the wedge

gives a second variation of the terminal admittance of the wedge waveguide.



APPE NDIX

A-2

SOLUTION OF INTEGRAL EQS. (3-3-2) and (3-3-3)

In this appendix, we will employ the Schwiuger transformation (Lewin,

1951) and use the trigonometric series (Schmeldler, 1955) to solve integral

Eqs. (3-3-2) and (3-3-3).

Since

_o_co_o_ _ _1__ oo,_1n' - _tn ¢'-
n-'l

(3-3-2) and (3-3-3)become, respectively,

_0

1 _ _(e) (¢,)afn21cos ¢, --_ _'o

-¢o

cos¢[ de'

(A-2-1)

(1 + E 2) (k0b) 2

p(e)cos n_}
n n

Jn(k0b)Nn(k0a) -Jn(k0a)Nn(k0b)
(A-2-2)

and

_0

i_ 2loos#,-- _ f(ne)(¢)In cos¢Ida'
_P

-¢0

(1 + _-2)(k0b )

COS n¢ (A-2-3)
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We then introduce a transformation due to Schwingero i.e.,

cos¢ c°s 2 _0 + ¢0
= _ sin2 _--cos s2

(A-2-4)

It is obvious that one may map the region -_0 < _ < _0 into the region

_ _..,._..z.^ _.... #,,,._.t_,_. /A-_-4_ hut not in one to one

correspondence. Thus we further introduce the restrictions

-_ <_ s < 0 corresponding to -¢0 < _ < 0

0 < s < _ corresponding to 0 < _ < _0

to the transformation (A-2-4). In this report, whenever the Schwinger

transformation is mentioned° these two restrictions as well as (A-2-4) are

implied.

Upon applying the Schwinger transformation to (A-2-2) and (A-2-3)°

one obtains

-(e) d ' =(e) (t)
these _- F 0 (t) dt + F 0 =

cos ms cos mt

m
dt

(D
1

_r(1+k2) (k0b) 2 n=_

E
n

(e) !" 1 2 ¢0 2 ¢0coslooo 
Jn(k0b)N_k0a) - J_k0a)Nn(k0b)

(A-2-5)

and

/

tncsc-_- -It - m=l

cos mscosmt

m

2(l+k2)ko b

. coslncos-1
_0 + _0

(COS2 -_- sin2 -_-cos s )1

dt

(A-2-6)
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where

Ae) (s)]F_e)(s)--F0 [¢

_(e)(s) _ f(e) [_(s)]
n n

(A-2-7)

(A-2-8)

for -¢0 < _ < ¢0 and -It < s < f •

The free terms of Eqs. (A-2- 5) and (A-2-6), respectively, can be

expanded into Fourier series; thus,

Im ¢0 2 ¢o co(e) cos-l(cos2 + sin -_-coss
,mJ" m cos -_- = _==, a(e)cosp s

J_(k0b)N_k0a)- Jm(k0a)N'm(k0b) p%__p
(A-2-9)

In '0 sin2_coss) 1 p=_. (e)cos cos I (cos2 -_- + -- = bnp

with

_ (e) x

a_e) _ 1 m_ O= m m Om-" 2-'_ J'(k0b)N'(k0a)-J'(k0a)N'(k0b)m m - m -m -

cos p s (A-2-I0)

(A-2-11)

GO

a(e) _ 2
p lr

m=p

r(e)x
m pm

J_n(k0b)Nm(k0a )-Jm(k0a )Nm(k0b)

(A-2-12)

b(e) 1
nO - 2_rX0n

b(e) iffi _X
np _r pn

(A-2-13)

(A-2-14)
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where

XN:Ic°80s°°slm-1 + ¢0 1cos (cos _- sin 2-_coss) d s (A-2-15)

The properties _ ._v
pm

discussion, we note that

•:_!! be !n_vesttgated in A-4. however for the present

X = 0 for p > m
pm

(A-2-16)

If we let

(e)
F_e)(t) _t' = a O (e) cos p t

P
(A-2-17)

fn(e)(t)_t' = tn(o)+ _ (e)cospt
p=l trip

(A-2-18)

for -It _< t _<_7r ;

upon substituting(A-2-9), (A-2-I0_ (A-2-17) and (A-2-18) in (A-2-5) and

(A-2-6), respectively, and employing the expressions (A-2-11) through (A-2-14),

we obtain

a,_e)= 1 1

(kob)2 '_ ¢0
_(1÷_-2) 4 _lncse _-

( _(e)x
oo m m Om

• _n J' (k^b)N' (k^a)-J' (k^a)N' (k..b)
_.=_ m o m u m u m u

(A-2-19)
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(e)
P

Ir(1 + _2) (k0b)2

O0

_r

m=p

F(e) v

m _pm

Jm(k0b)Nm(k0a) -Jm(k0a)Nm(k0b)

(A-2-20)

1 X0 n

- ¢0
/3(;)= - 2(1+_-2)(k0b) 4.2tncsc__

(A-2-21)

(e)
/3 = -

np
2 (1+_2)(k0b)

(A-2-22)

Ifone differentiatesthe Schwinger transformation with respect to _ o

one has

_ cos$2
• -#0< ¢ < ¢o

--_os#-cos_0'
(A-2-23)

Thus from (A-2-7) and (A-2-17)° we obtain

47co_L {_er,(e) (¢) = 2 )+
'1

-0 _cos¢-cos_o
p_1 _;)cos[p cosl(csc2_ cos ¢ -c°t2 _)]} *

-¢0 < _ < ¢0 " (A-2-24)

and from (A-2-8) and (A-2-18),

_COS

f(e) (¢) _

°
(e)+ _. _ (e)cosrp cos1(csc2 _ cos, _cot2 _)I}
no __1-p I:

-¢0 <¢<¢0 ' n=O,I, 2,...N , (A-2-25)
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If one defines

F (e)x
c m Om

s(e)= _. m
0 m=0 J m(k0b)Nm(k0a) - J m(k0a)Nm(k0 b)

(A-2-26)

O0

s(e) = 2 _..
P

m=p

rm _" Xp m

Jm(k0b )Nm(k 0 a) -Jre(k0a)Nm(k0b )

then F_e)(_}) and f(e)(_})n becomes

(A-2-27)

COS

F_e)(¢) = 3

.(l+_2)(k0b)2 _cos¢-cos¢ 0

t s:
l4,_'"°_°_°r:

(A-2-28)

f(e)(_)
ll

• CosKp

L

COS _-2

2(:+:2Xkob)#_osC-cos#0

cos-l(csc 2 -_ cos _- cot2

-)

n pX

-,,N::o

-_0 < ¢ < ¢0 " (A-2-29)



APPENDIX
A-3

SOLUTIONOF INTEGRAL EQ. {3-4-5) and {3-4-6)

Same as in A-2 we employ the Schwinger transformation and the

trigonometrical series method to solve integral Eqs. {3-4-5) and (3-4-6).

If we differentiate the well known formula (A-2-1) with respect to

for all ¢, ¢' < _0 except ¢ = ¢', we have

1 csin_ (A-3-1)m=lSinm_c°sm_' = 2 cos -cos_ "

Upon substituting(A-3-1) into {3-4-5) and (3-4-6), one obtains, respectively,

_0 F_0)(_') dt}'

1

2 cos ¢_cos¢

-¢0

and

a_ p (0)

1 m_ m
_2)(k0b)2 J' (k^b)N' {k,,a)-J' (k,,a)N' (k,,b)_{i+ m u m u m u m u

¢0 1 f(n0)(¢')d¢' 12 cosCLcos¢ --
-_}0 (1 +k"2Xk0b)

Since

(A-3-2)

sin n_
sin_- ' n=l, 2,... N . {A-3-3)

ssii_an = 2 y cosm_}

m=1,3,5...

for n even

n-I

0,_ _ cosmem= 2,4,... m

for n odd , (A-3-4)
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the free term of (A-3-2) can be written as

F (o)

m_-- Jm(k0b)Nm(k0a) -mJm(k0a)Nm(k0 b)
= _ L cos p_

sin _ _ p p
(A-3-5)

where

oo (I) (i)
L = _ r•

P _'-"I Vp + 2m- 1 p + 2m- 1
(A-3-6)

(1) 1
V

n Jn(k0b)Nn(k0a) - Jn(k0a)N_(k0b)
(A-3-7)

Upon substituting (A-3-5} in (A-3-2) and (A-3-4} in (A-3-3), we have

_01 F_O)(_')d¢' co
1

-¢02 cos_'-cos¢ = - Ir(1+k'2)(k0b)2 p-u-_-_•pLpc°sp¢ ;

(A-3-8)

¢0 f(0)(¢,)d ¢' n - 1

_02 cos -cos_ (l+_2)(k0b) p= 5...

cosp_, n=even ,

= - • cos p_ , n =odd . (A-3-9)

(l+f2)(k0b) p=0,2,4... P

We apply Schwinger's transformation (A-2-4) to (A-3-8) and (A-3-9) andlet

F_0)(t)---- F_0)[_(t)] (A-3-10)
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i (°)(t) -- f(o) [¢(t)]
n n

(A-3-11)

for -¢0 < ¢ < ¢0 and -It i t < 7r, and obtain respectively

--(0) d '

-_0 sin _-(cos t-cos s)

I 00---_Lr -i,2_0
7r(l+_.2)(k0b)2p=0-_.A p pCO_pcos _cos _--+

I ½ 2_o
-¢0 sin _-(cos t-cos s)

2 n-1 r -1 2¢0

,oo 
(l+_(k0b)

n = even ,

sin _- cos

(A-3-12)

2¢0 .Q
sin _- cos s ?J ,

1 dn

1 -I 2 _0+

(l+_2)(k0b) p=0_4.._pCOS_COS (cos _-

n = odd . (A-3-13)

In order to generate convenient expansions we multiply both sides of the

last three integral equations by sins. The free terms of these new integral

equations can be expanded by Fourier series, i.e.,

= _pLpCO cos (cos -_- sin-_-coss sinS=m=_a m sinms
(A-3-14)

2 COS[p COS1(C0 2 -_- +sine0 2 _- COSs¢O )lsin s
p= 1,3,...

n = even o (A-3-15)
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and

n-1

P =_ ep
a o#m

cos_pcos (cos_+sin _cos

n = odd

b(0) slams
nm

m=1

(A-3-16)

Since

sinms sins cos cos-l(cos 2 -_

7r

+ sin2 -_-cos s

--!(Xm_ )2 1,p-Xm+ 1, p

we obtain

(o) ia =m( •LX
m 2r p p m-l,p

p=m-1

O0

-2 Z LpXm+l,p) '
p=m+l

(A-3-17)

n-1

b(0) inm = 2--_( • X
p=0, 2,4,. p m-l,p

-2

n-1

_, Xm+ i, p)
p_ •o •

, n - odd, (A-3-18)

b(0) 1 _ (X )
nm = _ m-l,p-Xm+ 1, P

p = 1,3,...

We note that b (0) =0 when m> n. Because
nnl

n -- even . (A-3-19)

sin s =
2_c4_st - cos s ) m=l

slums cos mt

(A-3-12) and (A-3-13) become
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_-(0) de'F 0 (t)-_-

-Tr

CO

m=l

sinmscosmt dt = -

sin2¢o
2

_r(1+_-2)(k0b)2

_=_=qa(m0)Sinm s,
m=l

(A-3-20)

7T

I- (0) d_'
fn (t)-_- t

m=l

sin ms cos mt dt =
sin 2¢°- n (o)

(1 + _.2) (kob) = nm

n=l,2,... N .

sin m s

(A-3-21)

Now we let

F-(00)(t)_tt = C0+C Icost+C 2cos 2t+... (A-3-22)

f(n0)(t)--_= dn0 + dnlCOS t + dn2 cos2t + ... (A-3-23)

Upon substituting(A-3-22) and (A-3-23) in

coefficients C and d are found as
in am

(A-3-20) and (A-3-21), the Fourier

sin2 _ a (0)
2 m

C = -

rn 7r(i+_-2) (k0b)2 Ir

(A-3-24)

g0
sin2 --

d = _ 2 b(0)

nm Ir(1+ _2) (]Cob) nm

m>l (A-3-25)
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Hence

sin 2 _ a
(o)

,_o)(t).. _ =Co_ _ _ m
7r(1----g'--b)2+_-_.)%m= 1 --Tr cos mt ,

-_r< t < _r (A-3-26)

2 ¢o

i(a0)(t)_ sin _-_" _ b(0) cosmt ,: om

We recall that

-_r < t < _r (A-3-27)

2 ¢o+ ¢o
cos¢' = cos -_- sin2 _-cost

and therefore

dt

¢0
sin2 _- sin t

_i - (cos2_ sin2 _0+ -_-cos t)2

as t ----_ ± 7r
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Therefore,

i(o)(t)d_ dt

-----> 0 as t----> + #

and hence from (A-3-26) and (A-3-27), respectively, we have

_0
sin 2 __

2 (o)
>i a cos m_ .

m
C O = + _.2Xk0b)2_2(1 m = 1

(A-3-28)

du0 =

_0
sin 2 __

2

7r2(1+k"2) k0b

n

m_= b 0) cos mTrnm

Thus F_0)(t) and f(0)(t)nare

(A-3-29)

_0

sin2 -- co (0) (cos mTr - cos mt )
F--(00)(t) = 2_ dt _a

7r2(l+_.2)(k0b)2 d-_ m=1 m

-_ <_.t < _ , (A-3-30)

sin2¢O
"_ b (0) (cos mTr -

f'(n0)(t) = 7r(1+_2)2k0b _dt m=1- nm

-Tr <t<_

cos mt )

(A-3-31)
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Forthe convenience of further investigation we introduce a new function

m-1

U (t) - cos m_r-cos mt P_=_-_Cp(_l)m
m 1 + cos t = - P(m - p) cos pt (A-3-32)

T_we let IT ({_} denote the function U (t) in _ interval, then
m" " _

m-1

Urn(¢) : p:_ _p(-i) m - P(m - p) coslp cosl(csc 2 _-cos _ - cot 2 ) (A-3-33)

Thus Eqs. (A-3-30) and (A-3-31) become

_0
sin 2 -- co

F(0)(t)=O 2 dt _. (0)
2(l+_-2)(k0b)2 d-_ (l+cost) m=lam Um(t)

-Tr <t < 7r , (A-3-34)

and

_0
sin 2 m

2 dt n

f(:)(t) = (1 +k'2)_rk0b d'_ (1 +cost ) m=l_' bnm(0)_rn(t)

-Tr < t < 7r (A-3-35)

From the Schwinger's transformation, we obtain

sin2 _0
2 d_ (l+cost) = 2 cos cos_ - cos _0 (A-3-36)
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Therefore,

F_0)(¢) =
(l+_.2)0rk__) 20b • co os_-cOS_o =la(0)m Um(_) '

-¢0 -<¢ <-¢0 (A-3-37)

f_)(¢)= _co os¢ - cos¢0
(1 +._2) (_'k 0 b)

b (0) Urn(O)
nm

m'-i

-¢0 <--¢ <- ¢0 • (A-3-38)



APPENDIX

A-4

PROPERTIES OF X
qP

In Eq. (3-3-8) we put

2 ¢o
COSS =x , COS _- =b

then X becomes
qP

and (A-4-1)

X = 2
qP

i

I [ -I
cos(qcos-lx) cos pcos (b+ax)-] dx

.-1 1 - x2

(A-4-2)

Tchebychev polynomial is defined as

-1 ]T (x) = cos COS x ,
q

T O(x) - 1 ,

therefore one may rewrite (A-4-2) in the form

1 T (X)Tp(b+ax)
X =2 q dx .

1

(A-4-3)

It is obvious that for any _0

X00 = 27r . (A-4-4)

T (b+ax) is a p-th order polynomial of (b+ax), while Tm(X) is
P

a m-th order polynomial of x, therefore
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(b+ax) = _" a T (x)T
p _ m m

If we multiply both sides of that equation with

integrate from x = -1 to x = 1, we find

1

m___ l Tm(x)Tq (x)mX = 2
qP

dx °

But

I (X) Tq(x) dx -

•

2 '

'ff •

2T

,

m=q_0

re=q=0

• and

and therefore we conclude thatfor any _0

X = 0 if q > p . (A_4-5)
qP

DuHamel (1953), Salzer (1956)o Brown (1957) and others in their works

on radiation pattern of antenna arrays also studied integral (A-4-3). By different

approaches, they carried out the integration and arrived at a tedious formula

• X
q q, q+n =21r(2b)naqr_=2'I(_1)r[2(q+_-r)4b2 _(q+n-r-1)]r

[n_ _ %n- 1
• -r _qj2J)(q 2_r, ('_l (_-,-_,

q+ 4 bz -j
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q q'
where (r) denotes the binomial coefficient rt " (q-r)'. " and [y] denotes

the largest integer not exceeding y. For the convenience of further discussion,

welist X for n=0 to n=4:
q, q+n

X; = 27ra q •
q q•q

e X = 21r(q+1)aq(2b)
q q•q+l *

I(q+l ]¢ X = 2_(q+2)a q _(2b) 2-1)+a 2q q,q+2

• X =
q q•q+3

• X = 21r(q+4)a q
q q, q+4

+_(q+ 2)(q+2,3)

q+2 _ 2)a 2]2_(q+3)aq(2b)I(q+l) (--_-(2b) 2 1)+ (q+ o

[(q+ l)(q+ 2)(q+ 3) (q+ l)(q+ 2) l4 ' - 2! 'J (2b)4

_ (q+2)]a2(2b)2 + q+3 a 4}2'.
(A-4-7)

For n --> co • one may evaluate the integral (A-4-2) by the method of

stationary phase:

cos (he0 + q¢ _)
X _ 2 T cos q ;r . (A-4-8)

q'q " i 27ntan

Combining the informations given by (A-4-7) and (A-4-8), we may state the

following behavior of Xqo q+n: For any q _ O, as n increases from n.,

X increases gradually from _ra q to its first maximum and then
q• q+n

repeatedly swings from negative maximum to positive maximum with a

decreasing amplitude. For q=0, as n increases from 0• X0n decreases
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gradually from 2 _ to a negative maximum, then swings up and down with a

gradually reducing amplitude. In the case q _ 0, suppose the first maximum

of X occurs at n -- M o then it is seen that the increasing of q reduces
q, q+n

the value of X as well as increases the value of M.
q0q

Now we consider the special case of narrow slot. The necessary p

values for the narrow slot satisfy the condition p_0 2 < < 1. If in

zp - 2 r (A-4-9)cos[pcos -lz_ = (_l)r2 p-2r-1 ( r ) - ( r

we replace z
2 ¢o 2 ¢o

by cos -_+ sin -_- cost and make use of

2 ¢0 + ¢0 cos
(cos -y sin2T t_ -2r = 1-_0T (p-2r) (1 - cos t) (A-4-10)

we have

co_p cos -1 2_0 _O cos t _(cos _+ sin 2-

--_ r_= 2] ('l)r2P-2r-l[ 2(p-r)r -(p-r-I)]r

¢0 2 ¢0 2

4 g(P)+ T g(p)c°st
(A-4-11)

where

g(p) = _=_ (_l)r 2p_ 2r_ l[2(P-r p-r-l)]
)-( • (p-2r) . (A-4-12)

r r
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We note that g (p) < p.

the identity

Upon substituting(A-4-11) in (A-4-2) and employing

[9/2]
-r)_(p-r-i)] = 1_ (-i)r2P- 2r- i [2(Pr r

we attain

_2O,<pl• (A-4-13)

_02

-- _ g(p)
Xlp T •

(A-4-14)

and

X _ 0 q >__2 . (A-4-15)
qP

There is an alternate approach tofind X0p for _0 < < I. From Schwinger's

transformation• for q =0 we may rewrite (A-4-2) as

_0

Xop : l_lt°
d#

^¢n
"" 2 cos p_

-¢o - ¢o

_,._-"Jl:- .Lu Id_ = 27rJo(p_ O) .... _'
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If the angular width of the shell slot is very wide• we may let _0 = 7r- A •

where A is much smaller than unity• then we obtain

2_0 2 _0 2 A 2 A

cos -_+sin _-cost = sin _- + cos _-cost .

Now we let

b = sin 2 A 2 A
_- , a=cos _-

Salzer (1956) showed that

T,ax b,: ,_l,r2p-2r?,n-r,.,n-r-l,]
P q=0 r r

r(q_.2j)(p-2rq 2j). (3)a q+2Jbp-q-2r-2j

• T (x) .
q

If pA 2 << 1• (A-4-17) can be reduced to

T (ax+b)_ T (x)+-_ T (x)
p p z p-I "

(A-4-17)

(A-4-18)

Therefore

X 7r • p_=0
P•P

X (P+ 1)A2 71"
p•p+l 2

and

X _-- 0 for n > 2
p, p+n • -



APPENDIX

A-5

INTEGRATION OF A (0) AND B (0)
mn m

Using the Schwinger transformation we obtain from (3-4-15) ^.A ,q-a 1A%

respectively,

o,c I co_  oos ,0d,.-_- + sin _-cos dt (A-5-1)mn
-_-

and

m = m -_-cost) • P )(t) dt . (A-5-2)

Upon substituting(A-3-34) and (A-3-35) in (A-5-1) and (A-5-2), we have,

respectively

2 ¢o n

A(O) = m'mSln _" _ b(O)(cospTrX0m - Xprn)
mn (1+[2) _k0b np

(A-5-3)

B(O) m7 sin2_ CO

= m _ a(0)(cospTrXnm _ Xum)
m (i+_2) 7rk0b = p _-_ .

(A-5-4)
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APPENDIX
A-6

DIFFERENTIATION OF W(_)

Since

(2 cos ¢+ 1 - cos ¢0) sin ½ ¢

ycos¢ - cos ¢o

(A-6-1)

we find from (3-4-13)

dW (¢) Z

(l +k'2) (_kob) --_ '_

i
(2cos _+ 1 - cos ¢0) sin _ ¢

qcOs ¢ - cos ¢o'

{m_= a(°)m Um(#)+_rk0b _ n __ibnm

,.,f co (0)dU(¢) + (0)_b(0)dUm(l_) 1
+'_cos_lcos#-eos# 0 lm___;m _+Trkobnd___n m=lnm d# "

(A-6-2)

But

dUm(¢) dUm(t) dt (A-6-3)

d_ - dt _ '

and

dUm(t) sint [msinmt + cosm_r- cosmt] (A-6-4)
dt'" = I+cost L- slnt l'+cos'_ "
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If we define

- sin m t
V (t) - , -Tr < t < 7r

m slnt - -

m-I
m

= 1+2 _ cospt , m =odd

p=l

and

m-1

= 2 p_l= cospt , m=even
(A-6-5)

m-i

Vm(_) =l+2p_= cosplcos-l(csc2-_cos_-cot2-_) j
, m = odd

=2 p_l= cosp os (csc cos_-cot 2m) •

then we have

m = even

(A-6-6)

n

dU (t)

m _ sint [m _m(t Um(t)jdt 1+ cos t )2
(A-6-7)

From the Schwinger's transformation, one can show that

dt 1 sine

d-_ sln2 ¢0__ sint "
2

Thus itis seen from (A-6-3), (A-6-7) and (A-6-8) that

(A-6-8)

dUm(¢) _ sine
de cos ¢ - cos ¢0

(A-6-9)
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Hence (A-6-2) can be written as

+ (1+cos¢ ma )Vm((_)+Trkob O) mbnmVm(¢ .
= _ n m=l

-¢ < ¢ < ¢o • (A-S-tO)



APPENDIX

A-7

PROPERTIES OF THE INTEGRALS (4-3-6) TO (4-3-9)

we !et x = n./8 0 then from (4-3-6) to (4-3-9) we obtain, respectively,

1 1

p(e) = 80"3 __ cosn_r____xd__x (A-7-1)
1

1 1

Q(e) = 80-3 I cosnOoX dxn 3. , , (A-7-2)

-I _i - x 2

4 1 2n-1

p(O) -- I sin _ nTr dx
n = 003 -1

• (A-7-3)

4 1

Q(0) -- _ sinn80 xn = 00 3 3 2 dx .
(A-7-4)

It is well known that

1 1

I0( 2 v- _ _?P(v+ 7)-x ) coszxdx = 2

1
where p (v + _-) is the gamma function with

for n > 1, p(e)-- and _4-(e), respectively,
-- n --n

( 2)v
z a (z) (A-7-5)

1
v+_ as its argument.

can be written as

Therefore
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1 1

6

(A-7-6)

1 I

Q(e) = 00_(_)(_)_j (n_r)n 1 "
w

6

It is difficult to express p(0) and _(0)
n qn

functions. However, it is rather obvious that

^(0),_(e)
O (00) and _n /_0 is at least of the order

in terms of any classical

p(0),_(e)
n /r0 is at least of

002 when 00<< 1

(A-7-7)



APPENDIX

A-8

SUMMATION OF THE SERIES

n_= (Qn /Q0 /n AND n=l

Letting )7 = 00 cos _ we transform (4-3= 8) into

= 0 0 sin3 _cos_n 0 0 COS c_)d@ (A-8-1)

and hence

co

n=l
(Q(ne))2/n

2 7r 1

n= 1 n sin
0

lr 1

• _In3_ oo_(nOo _o__)d_
0

(A-8=2)

Upon interchanging the summation and integration, we arrive at

2 _ ! _ 1

n_l (ne))2/n = _0 -"_3 --3
(Q 0 0 d_sin _ sin _ .

_'0

co

n=l

cos(n00 cos_)cos(n00 cos_)

n
d_ (A-8-3)
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But

-_cos (n 0 cos _) cos (n 0 cos _)
n

n=l

For 00 << 1, we have

=_!2In2[c°s(00°°s_)- c°s(00c°s_)l
(A -8 -4)

2
0o

cos00cosalvl- _(l+cos2a)

2
00

cos 00cos _ _ I-'-'_ (l+cos 2/_)

(A-8-5)

and (A-8-4) becomes

o_ cos (n 00 cos a) cos (n 00 cos _ ) 2

n=_ _ln O0n
1 ln2lcos2_ - cos2a I2

cos 2 acos 2

n
(A-8-6)

Upon substituting (A-8-6) in (A-8-3) one has

_I _(e),2 3 a d _)2(_/n j _- 00 In ( ) ( sin 3n
1n =

v 0

+

_r 1

n_= 1 (lsin_-n

0

(A-8-7)
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One can see from (A-8-1) that

1 _" 1

(e) = e0"3 l --3Q0 sin _ d

0

(A-B-B)

and because the series on the right-hand side of (A-8-7) converges very

fast to 0.05053 00 2/3, the series

(3O

((e). (e))2.n _n(._2 )+
_1 Qn /Q0 / = 0.0195
n = (/0

(A-8-9)

Since

7r

IIJo(riCo)= ¥
0

cos (n _0 cos e ) d O (A-8-10)

we have

n=l nr 0 0

Following the same steps from (A-8-3) to (A-8-9), we obtain

cos/3)d

(A-8-11)

(3O

(A-8-12)



APPENDIX
A-9

TERMINAL ADMITTANCE OF A WEDGEWAVEGUIDE
IN A PERFECTLY CONDUCTINGCYLINDER

The geometry is as shown in Fig. A-9-1.

e0 /

-0 0

II

FIG. A-9-1: PERFECTLY CONDUCTING CYLINDER SLOTTED BY A

WEDGE.

The perfectly conducting circular cylinder body is of radius a. The width

of the wedge is 2 e 0 . If we put a magnetic line source at the apex of the

wedge, then the source excites E M fields in the free space (region II)

as well as inside the wedge (regionI). In Fig. 1-3 ff we let e =0,

_0 _ e0 and c ---) b --> a, then we obtain the same geometry as shown

Fig. A-9-1. If yt (a) is the normalized wedge terminal admittance defined

it can be shown by a similar procedure as inby (2-I-15) where r =a,

chapter II that

J nTr(koa)

y'(a) = J2 J'nlr(koa)

8o

eo 2
( )

eo

I (¢')d#'
-e0
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00 co H(2)(k0a)

-J-_- _n=0 cn H_2)ik0 a)

0o

_ (_')cosn_' d_'

"00 2
( )

0 o

l_ _(¢,)de'
0.

(A-9-1)

where _ (_') is the tangential electric field in the wedge aperture. This is

a stationary expression with respect to l_ (_). Hence, when 00 < < 1, one

may let

A

(¢,) _- w

_0 2 _ _2'

and since

J nTr(k0a)

,_ O0 koa

J'mr(k0a)

0o

for 00 < < 1,7r n
n>0

Eq. (A-9-1) becomes

00[ 2k0a __-°a H_2)(k0 a) (t_nl_(e),2 !

y'(a)
Z j.--_-

L, ,o, n=l
(A-9-2)

If Y'(a) is the terminal admittance of a section of the wedge waveguide

of length a meters, then
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Y'(a) I _[-0 y,(a)
200

It is straight forward to write down the conductance

from (A-9-3) as

(A-9-3)

G' and susceptance B'

_Qo e _(e)G' - 1 0 _ n Qn )2

7r2k0a n =0 1+ Xn 2 (Q0(e)N'n(k,,a)u "

mhos (A-9-4)

S t

p(e)

2k0a n (_)
= q0

CO
_(e)

l+xnYn1+xn2 (:(--_e)2

Nn(koa)

N_(koa) }
mhos (A-9-5)

where

x = /n (koa)/Nn(koa)

Yn = Jn(k0a)/Nn(k0a) "



APPENDIX
A-10

POYNTING'SENERGYTHEOREMIN THE PLASMA

SHEATH AND THE FREE SPACE

We consider a volume V enclosed by a surface S In which the electro-

magnetic fields are of periodic timetvariafion.. The Poynting's

theorem for this volume then is

-I (_x_*)" n-_ds = 4J_(WH-WE)+ 2P
S

(A-10-1)

where n is the outward normal of S and

W H = time-averaged stored magnetic energy in V

--_-. • G'dv ,
V

(A-10-2)

W E = time-averaged stored electric energy in V

#%

• -- _ E " E dv , (A-10-3)
4

V

P = time-averaged dissipated power in V

1 lg, I= _ a • dv . (A-10-4)

V
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As in the main text, we choose to consider a section of the coaxial

antenna of length a meters in z-direction and apply (A-IO-1) to the plasma

sheath and free space of this section respectively; we have

2p llI +j4_(WIH II _ WIEII) = a E III HIII * b d _ -a c

Z _.¢ Zr=b _- r=c

(A-10-5)

_HV _ _ 1 l EIVHIV*rd'i "
2pIV+j4w( -WIEV) =a E HIV*cd_z -a _ z

-r r =c -Tr r--> co

(A-I0-6)

It is obvious that there is no dissipated power in the free space, thus pIV = O.

Furthermore, ff P denotes the power radiated by this section of the antenna,
r

then

al  HxvIPr = 2 E z rd¢

r --> co

(A-10-7)

IV HIII HIV •Since at r =c, E =E_ and =
Z Z

(A-10-7) together and obtain

one may combine (A-10-5) through

iIi i I2pIII+j4W(WH-W E )+j4w(W H -W )+2P r H III de . (A-10-8)
z r= b

Upon substituting (2-2-11) and (2-2-12) in the right hand-side of (A-10-8)

and carrying out the integration, we have

_ III. IV IV )2pIII+2Pr+J4_(WHV-WE _+J4_(WH -WE
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4J

_,..,.H_l)(koc)
E %
n n (1)'

Hn (koC)

_-_o _-_o
(A-10-9)

Similarly, if we substitute (2-2-18) and (2-2-19) in (A-10-7), we attain a

formula as shown,

r 47r Y_'O 7rk0c A A *
n n

where

¢0 dCE*(¢)_ ¢0E (¢')cosn(¢-¢')d_'

-¢o -¢o

(A-10-10)

A n : [_H(O)'(koC)n [Jn(klC)Nn(klb) - J'n(klb)Nn(klC)]

-_<_o_[_Xo_o_X<_-_X_._X<_o_]. _-_o-_

For no plasma sheath case, we let c ---> b, _ -> 1 and obtain straight forwardly

from (A- 10-10) that

P
r
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